
DBStream: an Online Aggregation, Filtering and
Processing System for Network Traffic Monitoring

Arian Bär, Pedro Casas
FTW - Telecommunications Research Center Vienna

{baer, casas}@ftw.at

Lukasz Golab
University of Waterloo

lgolab@uwaterloo.ca

Alessandro Finamore
Politecnico di Torino

finamore@tlc.polito.it

Abstract—Network traffic monitoring systems generate high
volumes of heterogeneous data streams which have to be pro-
cessed and analyzed with different time constraints for daily
network management operations. Some monitoring applications
such as anomaly detection, performance tracking and alerting
require fast processing of specific incoming real-time data. Other
applications like fault diagnosis and trend analysis need to process
historical data and perform deep analysis on generally hetero-
geneous sources of data. The Data Stream Warehousing (DSW)
paradigm provides the means to handle both types of monitoring
applications within a single system, providing fast and rich data
analysis capabilities as well as data persistence. In this paper, we
introduce DBStream, a novel online traffic monitoring system
based on the DSW paradigm, which allows fast and flexible
analysis across multiple heterogeneous data sources. DBStream
provides a novel stream processing language for implementing
data processing modules, as well as aggregation, filtering, and
storage capabilities for further data analysis. We show multiple
traffic monitoring applications running on DBStream, processing
real traffic from operational ISPs.

Keywords—DBStream; Data Stream Warehousing; Network
Traffic Monitoring and Analysis

I. INTRODUCTION

The complexity of large-scale, Internet-like networks is
constantly increasing. With more and more services being
offered on the Internet, the massive adoption of Content
Delivery Networks (CDNs) for traffic hosting and delivery, and
the continuous growth of bandwidth-hungry video-streaming
services, network and server infrastructures are becoming
extremely difficult to understand and to track. Network Traffic
Monitoring and Analysis (NTMA) has taken an important role
to understand the functioning of such networks, especially to
get a broader and clearer visibility of unexpected events. The
evolution of the Internet calls for better and more flexible
measurement and monitoring systems to pinpoint problems and
optimize service quality.

A variety of methodologies and tools have been devised by
the research community to passively monitor network links.
Technologies such as NetFlow and more advanced monitoring
solutions [1]–[3] enable the monitoring of high-speed links
using off-the-shelf hardware. Similarly, several solutions are
available for active measurements, from simple command-line
tools such as the standard ping to more advanced frameworks
for topology discovery such as TopHat [4]. All these tools
are stand-alone solutions, capable of extracting large amounts
of detailed information from live networks. What is sorely

missing is a flexible system able to store and process such rich
and heterogeneous sources of network monitoring data in order
to understand the complicated dynamics of nowadays Internet.
Such a system should be capable of handling different types
of NTMA applications, from real-time or near real-time data
processing applications such as service performance tracking
and anomaly detection and alerting, to more complex big data
analysis tasks involving the processing of large amounts of
stored historical data. The Data Stream Warehousing (DSW)
paradigm [9] provides the means to handle both types of
monitoring applications within a single system, combining the
real-time data processing of data stream management systems
with the deep analytics of long historical data of traditional
warehouses.

In this paper we introduce DBStream, a flexible and scal-
able DSW system tailored to NTMA applications. DBStream
is a repository system capable of ingesting data streams
coming from a wide variety of sources (e.g., passive network
traffic data, active measurements, router logs and alerts, etc.)
and performing complex continuous analysis, aggregation and
filtering jobs on them. DBStream can store tens of terabytes
of heterogeneous data, and allows both real-time queries on
recent data as well as deep analysis of historical data. Figure 1
shows a standard deployment of DBStream as part of a generic
network monitoring architecture for current Internet-like net-
works, consisting of both passive and active probes, as well as
external data sources provided by other data repositories.

One of the main assets of DBStream is the flexibility
it provides to rapidly implement new NTMA applications,
through the usage of a novel stream processing language
tailored to continuous network analytics. Advanced analytics
can be programmed to run in parallel and continuously over
time, using just a few lines of code. The near real-time data
analysis is performed through the online processing of time-
length configurable batches of data (e.g., batches of one minute
of passive traffic measurements), which are then combined
with historical collections to keep a persistent collection of
the output. Moreover, the processed data can then be easily
integrated into visualization tools (e.g., web portals).

To exemplify the kind of NTMA applications which can
run on top of DBStream, we present in this paper four different
traffic processing applications, considering the incoming data
from passive probes installed both at the core of a mobile net-
work and at the edge of a fixed-line ADSL/FTTH network of
major European ISPs. In addition, we evaluate the performance
of DBStream in processing real traffic measurements, and
compare it both with standard PostgreSQL data repositories,978-1-4799-0959-9/14/$31.00 c© 2014 IEEE

ISP Network

IXP

Internet

eXchange

Point

peering link
access

links

access

links

A

DBStream

A P

active

probe

passive

probe

P

A

External Data

P

NTMA

Applications

Fig. 1. A standard deployment of DBStream in an ISP network. DBStream
is a data repository capable of processing data streams coming from a wide
variety of sources.

as well as MapReduce-based frameworks.

The remainder of this paper is organized as follows:
Related work is briefly discussed in Sec. II. Sec. III introduces
DBStream, describing its design and implementation. System
performance and scalability considerations are discussed in
Sec. IV. Sec. V shows four different NTMA applications
running on DBStream, processing traffic measurements from
two different operational networks. Finally, Sec. VI concludes
the paper.

II. RELATED WORK

Several technologies are available to potentially implement
a data repository system like DBStream, which we can coarsely
divide into SQL and NoSQL systems [5]. The former class
includes Database Management Systems (DBMSs), which are
known to offer excellent performance when accessing the data,
but suffer when new data have to be inserted continuously. The
latter class makes its selling point by offering great horizontal
scalability, but offers no guarantee on the response time.
NoSQL systems include MapReduce [10] systems, supporting
a simpler key-value interface rather than the relational/SQL
model used by DBMSs. Hadoop [11] and Hive [12] are two
popular MapReduce technologies. MapReduce systems are
based on batch processing rather than on stream processing,
which is specifically required in NTMA applications.

There has been a great deal of effort to improve traditional
DBMSs in the last several years. Many data processing and
storage systems have been developed to improve both perfor-
mance and scalability. Still, a major limitation of such sys-
tems is the inability to cope with continuous analytics. Some
new solutions have been proposed, including Data Stream
Management Systems (DSMSs) and Data Stream Warehouses
(DSW). DSMSs enable continuous processing of data over
time; examples include Gigascope [6] and Borealis [7]. These
systems consist of in-memory operations with no persistent
data storage, which is a critical limitation for traffic analysis
purposes. DSWs extend DBMSs with the ability to ingest new
data in nearly real-time. DataCell [8] and DataDepot [9] are
two examples, as well as the DBStream system presented in
this paper. Finally, hybrid systems composed of a mix of SQL

and NoSQL technologies have been proposed, for example
HadoopDB [13].

None of these systems were designed to address contin-
uous network monitoring applications. The only exception is
DataDepot, which is a closed-source system based on propri-
etary technologies. Furthermore, to the best of our knowledge,
only DBStream supports incremental queries defined through
a declarative language such as SQL, which are particularly
useful for tracking the status of a network.

III. SYSTEM OVERVIEW

DBStream is a novel continuous analytics system. Its
main purpose is to process and combine data from multiple
sources as they are produced, create aggregations, and store
query results for further processing by external analysis or
visualization modules. The system targets continuous network
monitoring but it is not limited to this context. For instance,
smart grids, intelligent transportation systems, or any other use
case that requires continuous process of large amounts of data
over time can take advantage of DBStream.

DBStream combines on-the-fly data processing of DSMSs
with the storage and analytic capabilities of DBMSs and
typical big data analysis systems such as Hadoop. In contrast
to DSMSs, data are stored persistently and are directly avail-
able for later visualization or further processing. As opposed
to traditional data analytics systems, which typically import
and transform data in large batches (e.g., days or weeks),
DBStream imports and processes data in small batches (e.g.,
on the order of minutes). Therefore, DBStream resembles a
DSMS in the sense that data can be processed quickly, but
streams can be re-played from past data. The only limitation
is the size of available storage. DBStream thus supports a
native concept of time. At the same time DBStream provides
a flexible interface for data loading and processing, based on
the declarative SQL language used by all relational DBMSs.

Two salient features of DBStream are the following: first, it
supports incremental queries defined through a declarative in-
terface based on the SQL query language. Incremental queries
are those which update their results by combining newly
arrived data with previously generated results rather than being
re-computed from scratch. This enables continuous time-series
based data analysis, which is a strong requirement for real-time
NTMA applications such as anomaly detection. Secondly, in
contrast to many database system extensions, DBStream does
not change the query processing engine. Instead, queries over
data streams are evaluated as repeated invocations of a process
that consumes a batch of newly arrived data and combines
them with the previous result to compute the new result.
Therefore, DBStream is able to reuse the full functionality of
the underlying DBMS, including its query processing engine
and query optimizer.

DBStream is built on top of a SQL DBMS back-end. We
use the PostgreSQL database in our implementation, but the
DBStream concept can easily be used with other databases and
it is not dependent on any specific features of PostgreSQL.

A. System Architecture

In DBStream, base tables store the raw data imported into
the system, and materialized views (or views for short) store

���

��������

	
�������

������	�

��	�����

��	��	��������	

������

������

�����������	���

�
��

�
��

�������
���

�

���

�

�

�

�
��

�
��

�������
���

�

���

�

�

�

��������� !���

�"�	������!�	��

Fig. 2. General overview of the DBStream architecture. DBStream combines
on-the-fly data processing of DSMSs with the storage and analytic capabilities
of DBMSs and big data analysis systems such as Hadoop.

the results of queries such as aggregates and other analytics —
which may then be accessed by ad hoc queries and applications
in the same way as base tables. Base tables and material-
ized views are stored in a time-partitioned format inside the
PostgreSQL database, which we refer to as Continuous Tables
(CT). Time partitioning makes it possible to insert new data
without modifying the entire table; instead, only the newest
partition is modified, leading to a significant performance
increase.

A job defines how data are processed in DBStream, having
one or more CTs as input, a single CT as output and an SQL
query defining the processing task. An example job could be:
“count the distinct destination IPs in the last 10 minutes”.
This job would be executed whenever 10 new minutes of data
have been added to the input table (independently of the wall
clock time) and stored in the corresponding CT.

Figure 2 gives a high-level overview of the DBStream
architecture. DBStream consists of a set of modules running as
separate operating system processes. The Scheduler defines
the order in which jobs are executed, and besides avoiding
resource contention, it ensures that data batches are processed
in chronological order for any given table or view. Import
modules may pre-process the raw data if necessary, and signal
the availability of new data to the Scheduler. The scheduler
then runs jobs that update the base tables with newly arrived
data and create indices, followed by incrementally updating
the materialized views. Each view update is done by running
an SQL query that retrieves the previous state of the view
and modifies it to account for newly arrived data; new results
are then inserted into a new partition of the view, and indices
are created for this partition. View Generation modules
register jobs at the Scheduler. Finally, the Retention

module is responsible for implementing data retention policies.
It monitors base tables and views, deleting old data based on
predefined storage size quotas and other data retention policies.
Since each base table and view is partitioned by time, deleting
old data is simple: it suffices to drop the oldest partition(s).

The DBStream system is operated by an application server
process called hydra, which reads the DBStream configu-
ration file, starts all modules, and monitors them over time.
Status information is fetched from those modules and made
available in a centralized location. Modules can be placed on
separate machines, and external programs can connect directly
to DBStream modules by issuing simple HTTP requests.

The DBstream system features a simple processing lan-
guage. Below we show an example of a typical aggregation
query, counting the number of rows per minute and device
class. If the input table A has one flow in each row, the number
of rows corresponds to the number of flows.

<job inputs="A (window 15min)"
output="B (window 15min)"

schema="time int4, dev_class int4, cnt int4">
<query>
select time - time%1min, dev_class, count(*)
from A
group by serial_time, dev_class

</query>
</job>

In more detail, the XML attribute inputs is used to define
one or more input streams. For each input stream, the batch
size is specified with a window definition; in the example,
the window size is 15 minutes. The output attribute is
used to specify an output stream, which then can be used as
input to other queries. The output stream also has a window
definition. In addition, for the output stream, the schema

is defined as the set of data types returned by the query.
Note that the first column must be a monotonically increasing
timestamp, which is used in the window definitions. Inside
the query XML element, an SQL query defines how the
input(s) should be processed. The result of this query is then
stored in the new window of the output table. In the query,
all features of PostgreSQL, including the very flexible User
Defined Functions (UDF)s, can be used to process the data.
Utilizing UDFs, it is easy to add code written in Python, Perl,
C, R and other programming languages into the query.

In particular, when defining the query to compute a new
window of an output table based on a new window of an input
stream, it is possible to reference the previous window of the
output table in addition to the new window of the input stream.
This is useful when, e.g., computing cumulative counts and
sums such as upload and download volumes over long periods
of time. In this case, it suffices to add the volumes from the
new input window to the cumulative sums maintained in the
(previous window of the) output table. We call these queries
incremental queries in the remainder of this paper.

IV. PERFORMANCE BENCHMARKING

In this section, we compare DBStream implemented on top
of PostgreSQL version 9.2 with standard PostgreSQL version
9.2. We perform three tests: a simple benchmark measuring
the overhead of DBStream, a simple workload that illustrates
the benefits of the scheduler, and a more complex query that
illustrates the performance benefits of incremental processing.
We use a 10 day-long data set collected at the vantage point of
a major European ISP, which corresponds to 496 GB of data
in plain text files and 703 GB in DBStream, containing 1.052
billion TCP connections. DBStream runs on a single server,
equipped with a XEON E5 2640 2.5 GHz, 32 GB of RAM
and four 2TB hard disks running in a RAID10 configuration.

The first test is a very simple query counting the number
of flows in one day. It acts as a baseline for the hardware
performance of the server as well as showing the overhead
of DBStream compared to PostgreSQL. Note that running

Fig. 3. DBStream performance vs. PostgreSQL. The Scheduler and the
usage of incremental queries significantly improve performance.

a single query means that the DBStream scheduler is not
necessary. In the considered day, the data amounts to 55
GB, corresponding to 82 million TCP connections. DBStream
processed approximately 268 thousand rows per second and
PostgreSQL 269 thousands; this is also reflected in the pro-
cessed MB/s, which is 179 MB/s for DBStream and 180
MB/s for PostgreSQL. This test shows that the overhead of
DBStream is minimal with respect to standard PostgreSQL.

The second test considers a more typical use case for DSWs
and is meant to illustrate the need for a scheduler. Given one
day of traffic data, we compute various aggregate statistics on
HTTP traffic. We create 5 views, all with a window size of
1 minute. The first, call it A, contains only the interesting
set of columns corresponding to HTTP flows. For example,
we discard all P2P traffic and fetch organization names from
the MaxMind database using a join query. This materialized
view amounts to 4 GB. From view A, we generate four
derived views, B, C, D and E, which can directly be used
for visualization. These contain percentiles of the HTTP traffic
statistics we are interested in: per-connection uploaded bytes
in B, downloaded bytes in C, minimum Round Trip Times in
D, and server elaboration time in E.

In PostgreSQL, we first load the whole day’s worth of
data into table A and then run the queries corresponding to
the other views and save their results in the respective tables.
In DBStream, all views are formulated as jobs with input
windows of 10 minutes and created by “replaying” the same
day of data letting the DBStream Scheduler propagate the
changes to all the views. As shown in Figure 3 – Workload
1, the roughly three-times better performance of DBStream is
achieved by parallelization. Since the Scheduler is aware of
the precedence constraints among the views, whenever one 10
minutes window of A is loaded, the corresponding partitions
of B, C, D and E can be computed in parallel, and at the
same time, processing of the next window of A can start.

In the last experiment, we evaluate the efficiency of in-
cremental queries, as compared to re-computing the results
from scratch, which is done by default in PostgreSQL. We
define a job which computes all the active IPs over a moving
window. We assume that each window is 1 minute long, and
test three variants of this query: finding all the active IPs within
the past 10 minutes, 30 minutes and 60 minutes. Intuitively,
as the length of the sliding window referenced by the query
increases, we expect the performance advantage of incremental
processing to increase. As shown in Figure 3 – Workload
2, the advantage of DBStream for 10-minute windows is
only marginal; however, for 30-minute windows DBStream is
noticeably faster, and for 60-minute windows it is over three

Fig. 4. Summary of processing job and import durations for TicketDB, the
predecessor of DBStream.

times as fast as PostgreSQL.

To conclude the performance evaluation of DBStream, and
for the sake of completeness, we present in Table 4 the perfor-
mance comparison of TicketDB against the popular MapRe-
duce system Hadoop, reported in our previous work [15].
TicketDB is the predecessor of the DBStream system, which
does not include the Scheduler and View Generation

modules, but already uses similar table partitioning techniques.
Besides the new modules, DBStream uses de-normalized tables
and is more optimized than TicketDB. Figure 4 reports the du-
ration of four different jobs running both on a Hadoop cluster
and on TicketDB. The dataset used in this evaluation consists
of real network traces captured at the well-known WIDE
network1. A total of 100 GB of data is imported. The four jobs
cover typical network monitoring tasks such as: byte counts
per IP (J1), ranking IPs by volume (J2), connection counts (J3)
and counts of unanswered TCP handshakes (J4). The hardware
characteristics of both environments are comparable in terms of
equipment costs, but the main difference is that TicketDB runs
on a single machine, whereas Hadoop runs on a cluster of 11
machines deployed on Amazon EC2; see [15] for the complete
details. The reported results show that once the data are loaded
into the system, TicketDB clearly outperforms the Hadoop
cluster. This suggests a potentially much higher performance of
DBStream compared to Hadoop, even if further benchmarking
should be conducted to be conclusive.

V. NTMA APPLICATIONS IN DBSTREAM

We now briefly overview four different NTMA applications
currently running on top of DBStream, which exemplify the
kind of analysis it targets. The four applications analyze traffic
packets passively observed at two different operational ISPs.
The first ISP corresponds to a mobile network operator, and
the traffic is captured at the standard Gn data interface. The
second ISP corresponds to a fixed-line operator, and traffic
is captured at a Point-of-Presence aggregating about 45,000
end-users connected to the Internet, either through ADSL
or FTTH access technologies. The four applications include:
(i) HTTP traffic classification [16], (ii) YouTube Quality of
Experience (QoE) monitoring [17], (iii) CDN-based traffic
tracking and analysis and (iv) on-line anomaly detection in
end-user performance.

A. Traffic Classification for Trend Analysis

Figure 5 depicts two tracking applications of HTTPTag,
an on-line HTTP traffic classification system running on

1http://www.wide.ad.jp/

0 23 46 69 92 115 138
0

0.2

0.4

0.6

0.8

1

Days (1−day time slots)

R
e
la

ti
v
e
 T

ra
ff

ic
 V

o
lu

m
e

Avira

Symantec

Kaspersky

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

Days (2−day time slots)

R
e
la

ti
v
e
 T

ra
ff

ic
 V

o
lu

m
e

Megavideo

AVS 1

Stream2k

AVS 2

Megaupload blocked 19/01/12

(a) 5-months anti-virus services tracking (b) 6-months video services tracking

Fig. 5. HTTPTag classification coverage and some long-term tracking
examples revealing different events of interest in an operational 3G network.

89%

9%
2% MOS = 5

MOS = 3.4
MOS < 3

92%

4%5% MOS = 5
MOS = 3.4
MOS < 3

(a) MOS distribution (tickets). (b) MOS distribution (video time).

Fig. 6. YouTube QoE monitoring on a mobile network.

DBStream in a mobile network. HTTPTag classifies HTTP
flows by pattern matching, applied to the hostname field of
the HTTP requests. Figure 5(a) reports the traffic generated
by three popular anti-virus services (Symantec, Kaspersky,
and Avira) over a period of four months (from 26/05/12 to
15/10/12). Analyzing the traffic patterns over a sufficiently
long period gives for example a good image of the different
approaches the three companies use to manage software and
virus-definition updates. Figure 5(b) depicts a comparison of
four video streaming services over a 6-month period (from
1/12/11 to 25/05/12): Megavideo, Stream2k, and two adult
video services (AVS 1 and 2). After 46 days from the start-
ing day, Megavideo traffic completely disappears, which
correlates to the well-known shut-down of the Megaupload
services on 19/01/12. Having visibility over such variations
and trends allows the network operator to better optimize
his network, by defining for example specific content caching
policies to reduce the load on the core links, different routing,
load balancing, or prioritization/shaping policies.

B. YouTube QoE Monitoring

Figure 6 depicts the QoE experienced by users watching
YouTube videos on the aforementioned mobile network, as
reported by YOUQMON during one hour of traffic monitoring.
YOUQMON is an on-line monitoring module running on
DBStream, capable of assessing the QoE experienced by users
watching YouTube videos, using network-layer measurements
processing. Every 60 seconds, and for every YouTube video
detected in a stream of packets, DBStream generates a ticket
with the estimated QoE of the user, using a standard 5-
points MOS scale, where 5 means perfect QoE, and 1 means
unacceptable quality. The charts in Figs. 6(a) and 6(b) depict
the distribution of number of tickets and total video played
time at three different QoE classes: MOS = 5 (perfect QoE),
MOS = 3.4 (poor QoE) and MOS < 3 (bad QoE). The charts
show that YouTube QoE in this network is excellent for about
90% of the issued tickets and of the video time consumed

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

06:00

Mon

12:00

Mon

18:00

Mon

00:00

Tue

06:00

Tue

12:00

Tue

18:00

Tue

00:00

Wed

F
lo

w
s

All Akamai traffic Akamai Preferred cache

(a) Evolution of number of flows served by Akamai CDN.

 10

 100

06:00

Mon

12:00

Mon

18:00

Mon

00:00

Tue

06:00

Tue

12:00

Tue

18:00

Tue

00:00

Wed

E
la

b
o

ra
ti

o
n

 t
im

e

75th 50th 25th 5th

(b) Evolution of server elaboration time percentiles for the preferred cache.

Fig. 7. Tracking the behavior of Akamai. Strong variations in the number of
flows served by the preferred cache might be caused by overloaded Akamai
servers.

during the analyzed hour. For 9% of the issued tickets and
4% of the total video time, the quality achieved was rather
poor, and bad for about 2% of the generated tickets. Using
this monitoring application, the operator can have a clear view
of the performance of the mobile network with respect to the
satisfaction of the customers watching YouTube videos.

C. Tracking CDNs

Understanding the way traffic is served by large CDNs
such as Akamai is useful for ISPs because of the dynamic
server/cache selection policies they use, which might cause
important traffic shifts inside the ISP boundaries in just a
few minutes. Figure 7 reports the on-line tracking of the
number of flows served by Akamai in the fixed-line network,
using 5-minute time windows. Akamai flows are identified in
DBStream by using the information provided at the aforemen-
tioned MaxMind database. Figure 7(a) focuses on a single
/25 subnet hosting Akamai serves (the “preferred cache”),
which provides the majority of the flows in this network.
The preferred cache serves about 30% of the traffic at peak
time. Surprisingly, traffic served by the preferred cache incurs
occasional drops. These are the effects of the CDN server
selection policies shifting traffic back and forth among CDN
nodes. Figure 7(b) reports the evolution of the 5th, 25th, 50th,
and 75th percentiles of the elaboration time2 for the preferred
cache servers. The abrupt increase in the elaboration time
might indicate that the sudden drops in the number of served
flows are caused by overloaded Akamai servers.

DBStream is used to group rows by service names3. As
before, we consider time bins of 5 minutes, and for each
service name we compute the fraction of requests served by the
preferred and other caches. The obtained values are represented
by the heatmap shown in Fig. 8. We selected the most popular

2The time between the client first packet with payload, and the server first
packet with payload.

3Some string pre-processing is applied to group together FQDN such as
a1.da1.facebook.akamai.net, a2.da1.fecebook.akamai.net, etc.

06:00
Mon

12:00
Mon

18:00
Mon

00:00
Tue

06:00
Tue

12:00
Tue

18:00
Tue

00:00
Wed

 0

 100

 200

 300

 400

 500
F

Q
D

N

06:00
Mon

12:00
Mon

18:00
Mon

00:00
Tue

06:00
Tue

12:00
Tue

18:00
Tue

00:00
Wed

 0

 100

 200

 300

 400

 500
F

Q
D

N

 0

 0.2

 0.4

 0.6

 0.8

 1

Akamai
Preferred

Akamai
Others

Fig. 8. Evolution of the volume of requests per service name (62 seconds
of query execution time).

00:00 00:00 00:00 00:00 00:00 00:00
0.1

0.2

0.3

0.4

0.5

0.6

time [hh:mm]

K
L
 d

iv
e
rg

e
n
c
e

Wed Thu Fri Sat Sun Mon

Mean

lower−bound

upper−bound

Fig. 9. Detection of anomalies in YouTube traffic. Alarms and acceptance
region for the distribution of video flows average download rate. The red
markers correspond to the flagged anomalies.

services, and sorted them by the probability of being served
by the preferred cache. The results clearly show two groups:
the bottom 300 services are normally served by some server
at the preferred cache (red dots). The other 200 services are
served exclusively by other Akamai CDN servers (green dots).
Services not accessed any more during off peak time are left
white. At the same time as the traffic shifts occur, practically
all services are migrated to other caches, indicated by the green
vertical bars in the plot. Only a group of about 20 services is
never migrated, except during the aforementioned 2 hours gap
on Tuesday, where all traffic is shifted to other caches.

D. Anomaly Detection

The last NTMA application consists of an on-line Anomaly
Detection (AD) module. Figure 9 reports the output of the AD
module when monitoring the downlink rate of users watching
YouTube videos at the fixed-line network. The red markers
in the plot correspond to alarms, which flag a large drop in
the overall distribution of the per-user downlink throughput.
Only YouTube flows are analyzed by the AD module, which
in this case are pre-filtered by the passive probe capturing
the traffic [2]. From Wednesday onward, the AD module
systematically rises alarms at peak hours, between 21:00 and
23:00. Further analysis of these flagged anomalies revealed
that the throughput drops might have been caused by the server
selection policies used by Google, as the selected servers were
apparently not correctly dimensioned to handle the traffic load
at peak time.

VI. CONCLUDING REMARKS

In this paper we introduced DBStream, a novel Data Stream
Warehouse (DSW) for online processing of data streams,
typical for network monitoring environments. DBStream offers
a flexible language that not only allows easy creation of materi-
alized views, but also incremental queries that can merge their
own past output with newly arrived data. This simplifies the
writing of typical jobs for network measurement analysis and
can improve processing performance threefold. The DBStream
scheduler automatically resolves precedence constraints and
can therefore run independent queries in parallel to speed-
up the processing time. We have evaluated and benchmarked
the performance of DBStream against standard SQL and
NoSQL systems, showing promising results. Finally, we have
presented different NTMA applications running on DBStream,
processing traffic measurements from two different operational
networks.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union under the FP7 Grant Agreement
n.318627 (Integrated Project mPlane). All members of FTW
are supported by the Austrian Government and by the City of
Vienna within the competence center program COMET.

REFERENCES

[1] K. Keys et al., “The architecture of CoralReef: an Internet traffic
monitoring software suite”, in PAM, 2001.

[2] A. Finamore et al., “Experiences of internet traffic monitoring with
tstat”, in IEEE Network, vol 25(3), pp. 8–14, 2011.

[3] F. Fusco et al., “High speed network traffic analysis with commodity
multi-core systems”, in ACM IMC, 2010.

[4] T. Bourgeau et al., “TopHat: supporting experiments through measure-
ment infrastructure federation”, in TridentCom, 2010.

[5] R. Cattell, “Scalable SQL and NoSQL data stores”, in ACM SIGMOD,
2011.

[6] C. Cranor et al., “Gigascope: a stream database for network applica-
tions”, in ACM SIGMOD, 2003.

[7] D. Abadi et al., “Aurora: a new model and architecture for data stream
management”, in VLDB Journal, vol. 12(2), pp. 120–139, 2003.

[8] E. Liarou et al., “MonetDB/Datacell: online analytics in a streaming
column-store”, in VLDB, 2012.

[9] L. Golab et al., “Stream Warehousing with DataDepot”, in ACM

SIGMOD, 2009.

[10] J. Dean et al., “Mapreduce: simplified data processing on large clusters”,
in Commun. ACM, vol. 51(1), pp. 107–113, 2008.

[11] T. White, “Hadoop: the definitive guide”, O’Reilly, 2012.

[12] A. Thusoo et al., “Hive - a petabyte scale data warehouse using hadoop”,
in ICDE, 2010.

[13] A. Abouzeid et al., “HadoopDB: an architectural hybrid of mapreduce
and dbms technologies for analytical workloads”, in VLDB, 2009.

[14] A. Arasu et al., “The CQL continuous query language: semantic
foundations and query execution”, in VLDB Journal, vol. 15(2), pp.
121–142, 2006.

[15] A. Bär et al., “Two parallel approaches to network data analysis”, in
LADIS, 2011.

[16] P. Fiadino et al., “HTTPTag: A Flexible On-line HTTP Classification
System for Operational 3G Networks”, in INFOCOM, 2013.

[17] P. Casas et al., “YOUQMON: A System for On-line Monitoring of
YouTube QoE in Operational 3G Networks”, in IFIP Performance,
2013.

