
Mining Unclassified Traffic Using Automatic
Clustering Techniques

Alessandro Finamore, Marco Mellia, and Michela Meo

Politecnico di Torino
lastname@tlc.polito.it

Abstract. In this paper we present a fully unsupervised algorithm to
identify classes of traffic inside an aggregate. The algorithm leverages
on the K-means clustering algorithm, augmented with a mechanism to
automatically determine the number of traffic clusters. The signatures
used for clustering are statistical representations of the application layer
protocols.

The proposed technique is extensively tested considering UDP traffic
traces collected from operative networks. Performance tests show that it
can clusterize the traffic in few tens of pure clusters, achieving an accu-
racy above 95%. Results are promising and suggest that the proposed
approach might effectively be used for automatic traffic monitoring, e.g.,
to identify the birth of new applications and protocols, or the presence
of anomalous or unexpected traffic.

1 Introduction

The identification and characterization of network traffic is one of the most
important activities for an operator. Through the continuous monitoring of the
traffic, security policies can be deployed and tuned, anomalies can be detected,
changes in the users behavior can be identified so that QoS and traffic engineering
policies can be continuously improved.

In the last years, several traffic classification techniques have been proposed.
At the beginning port-based approaches were mainly used; however, the char-
acteristics of many nowadays applications that employ randomly chosen ports,
significantly reduce the effectiveness of these approaches [1–4]. Those are today
abandoned in favor of deep packet inspection (DPI) or behavioral techniques
[13, 15]. In the first case, the traffic is classified looking for specific keywords
inside the packet payload, e.g., BitTorrent or GET/POST keywords identify the
BitTorrent and HTTP protocols, respectively. Behavioral techniques try to over-
come the limitations of DPI, e.g., when payload is encrypted, by exploiting some
description of the application behavior through statistical characteristics, such
as the length of the first packets of a flows.

All these classifiers share some key aspects. On the one hand a deep domain
knowledge is required to correctly train and periodically update these classifiers.
On the other hand, the classifiers can identify only the specific applications they
have been trained for; all other traffic is aggregated in a single class labeled
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as “unclassified”. The classifiers are therefore typically tuned to identify the
prominent classes but they completely miss the dynamics of the rest of the
traffic. For example, they cannot identify the introduction of a new application,
or changes in the users’ behavior or in the applications protocols.

Classification can happen at different degrees of granularity: packet, flow, or
endpoint1, with significant differences on the number of objects to be considered.
However, when mining the subset of unclassified traffic, the number of objects
to be analyzed is still large even when considering higher aggregation levels. For
instance, for moderate traffic aggregates, the even small fraction of unclassified
traffic is typically built by thousands of endpoints, each aggregating tens of flows
made of hundreds of packets. How to practically reduce the number of unknown
objects to analyze is therefore a key problem.

In this paper, we focus our attention on the inspection of the unclassified
traffic. We propose an unsupervised technique that, having no knowledge of the
applications that generate the traffic, partitions a traffic aggregate into “clusters”
that are distinguished based on common features, i.e., they exhibit a common
treat. A simple clustering methodology based on the K-means algorithm is aug-
mented with the capability to effectively determine the number of traffic clusters
K . The results is a simple algorithm that can reduce the number of objects to
analyze to few tens, even if the total traffic amounts to several tens of megabits
per seconds. By being completely automatic and unsupervised, the proposed
methodology can be engineered to: i) identify new classes of traffic by exploiting
the network administrator domain knowledge when inspecting a traffic cluster;
ii) monitor the traffic evolution by highlighting the birth of traffic clusters cor-
responding to traffic of previously unobserved applications; iii) design anomalies
detection techniques by observing the evolution of traffic clusters over time.

To test and validate our methodology, we consider some UDP traffic traces of
which we already have a deep knowledge on, achieved through a combination of
DPI and statistical techniques, as well as the results of some active experiments.
We consider UDP traffic since today its importance is steadily increasing [4], and
few works explicitly targeted it in the past. We apply the proposed technique
to the traces and check the coherence of the automatic classification with our
ground truth. Experimental results show that the proposed clustering algorithm
is very effective. Clusters accuracy is typically higher than 95% and the number
of clusters is also very small, e.g., never larger than 40, and typically in the
order of 25. Such a good performance is due to both the descriptiveness of the
KISS features, and the goodness of the agglomerative process. With respect to
previous proposals [5, 6] in which hundreds of clusters were needed to achieve
good accuracy, the major advantage of our solution is that it reduces the time
needed to inspect the clusters since the traffic is better partitioned.
Finally, we present some examples of classification of unknown traffic we were
able to identify.

1 A flow is commonly defined as the group of packets that have the same tuple {srcIP,
dstIP, srcPort, dstPort, protocol}. An endpoint identifies the group of flows having
the same {host IP, host Port, protocol} tuple.
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2 Data Mining Techniques and Related Work

Machine learning algorithms are data mining techniques used to create a model
from a dataset. They can be grouped in two families: supervised and unsupervised
techniques. In both cases, objects are characterized by features, i.e., a vector of
characteristics that can be extracted automatically by observation. Supervised
algorithms exploit a training dataset in which each object is labeled, i.e., it is
a-priori associated to a particular class. This coupling is used to create a suit-
able model so that objects with the same labels are grouped together. Then,
unlabeled objects can be associated to a class previously defined according to
their features. For unsupervised algorithms, instead, the grouping operation is
automated without any knowledge of a-priori labels. Groups of objects are then
clustered based only on a notion of distance evaluated among samples, so that
objects with similar features are part of the same cluster. Supervised algorithms
allow high accuracy during classification, provided that the training set is rep-
resentative of the objects.

The application of machine learning techniques is not new in the traffic clas-
sification field. [7] is one of the preliminary works and shows that clustering
techniques are useful to obtain insights about the traffic. In [6] supervised and
unsupervised techniques are compared, demonstrating that unsupervised algo-
rithms can achieve the same performance of the supervised algorithms. Other
works compare the accuracy of different unsupervised algorithms [3, 5, 8]. In gen-
eral, the techniques presented in these works achieve a very high accuracy but
they typically require several hundreds of clusters, therefore making it difficult
to then inspect and label the clusters. Recently, [9] and [10] have introduced the
semi-supervised methodology. They exploit the advantages of both methodolo-
gies: a clustering algorithm is used to partition the dataset as in the unsupervised
case. Part of the dataset is labeled, so that it is possible to extend the classi-
fication to all objects in the same cluster. Results shows that the accuracy of
the classification largely depends on the goodness and coverage of the labeled
dataset, and clusters without labeled objects cannot be further classified.

All previous works focus on the classification accuracy of some target classes,
i.e., a small subset of the applications to consider. Real traffic is however com-
posed by a large mix of applications and often it is crucial to mine the remaining
part of the traffic which is still unclassified. For example, in [3] authors show that
the best classifier has poor performance when considering the unclassified traffic
which amounts to more than 10% of the total.

In addition, the Internet represents a dynamic environment in which new
applications are born, evolve and die continuously. By following these patterns,
it is possible to better understand the users behaviors and the technology trends.

3 Feature Selection: Kiss Signatures

Machine learning algorithms are based on a description of objects summarized
in a vector. The elements of the vector are called features and constitute a de-
scription of all known characteristics of the instance. They play a key role in the
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effectiveness of the machine learning algorithm, i.e., the more descriptive the
features are, the better the performance is. In the past, most of the works con-
sidered a large set of generic features, such as packet/flow length, port number,
round trip time. In this paper, instead, we rely on the signatures defined by Kiss,
a stochastic classifier that we proposed in [11, 12]. The intuition behind Kiss is
that application-layer protocols can be identified by statistically characterizing
the stream of bytes observed in a flow of packets. Kiss builds protocol signatures
by measuring the randomness of groups of bits extracted from the packets pay-
load. Considering an analogy, this process is like recognizing the foreign language
by considering only the cacophony of the conversation, i.e., by letting the proto-
col format emerge, while discarding its actual semantic. Kiss features proved to
be highly descriptive when adopted in supervised machine learning algorithms
for traffic classification.

Kiss signatures are computed over the packets directed to or originated from
a given endpoint. They aim at measuring the randomness of the first bytes of the
packet payload that are those usually carrying application header. In particular,
the first 12 bytes of the packet payload are divided into groups of b = 4 bits,
for a total of G = 24 groups. For each group, the statistic of the occurrence of
each of the 2b = 16 possible values is computed over N = 80 packets. Then,
the randomness of each group g, denoted by Xg, is measured as the Chi-Square
distance of the group statistics with respect to the uniform distribution,

Xg =
2b−1∑

i=0

(Og
i −Ei)

2

Ei
(1)

where Og
i is the observed occurrence of the value i for the g group, and Ei = N/2b

is the expected occurrence for the uniform distribution. Finally, since the value
of Xg grows exponentially with the number of deterministic bits in the group,
and linearly with N [11], we derive,

bg = log2

(
Xg

N
+ 1
)

(2)

where bg represents then the number of constant bits in group g. The vector
{b1, b2, . . . , bG} represents the Kiss signature used in the rest of the paper.

Since Kiss features are obtained from inspection of packet payload, encrypted
application layer protocols may limit the goodness of the features, i.e., all groups
may look like random data. In those cases, it would results impossible to correctly
distinguish two applications that adopt fully encrypted payload.

In summary, each Kiss signature computed from the traffic of an endpoint
corresponds to a “point” in an hyper-space of 24 dimensions. Given then a set of
monitored endpoints and of corresponding Kiss signatures, the objective of this
work is to identify “clouds” of similar points, i.e., to clusterize the signatures with
no a-priori knowledge about the applications that generated the traffic. Resulting
clusters are higher level objects that can be investigated further, and whose
properties naturally extend to each endpoint in it. For example, the clusters
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give indications about how the traffic volume distributes among the regions
suggesting which dataset should be further inspected. Similarly, by constantly
monitoring the galaxy of clouds in time, it would also be possible to identify
traffic shifts due to the rise/decline of applications, to the presence of anomalous
behaviors, or malicious users.

4 Clustering Methodology

Kiss signatures map the traffic generated by applications into points in an hyper-
space. To partition the space into pure clusters where points are generated by the
same application, we leverage on the K-means algorithm, a classic unsupervised
technique [13]. Given a set of K “centroids”, the K-means algorithm iterates over
two steps: it first assigns each point to the closest centroid, defining a cluster;
then, each cluster centroid is re-computed as the arithmetic mean among all
points of the cluster. The algorithm ends either after a predefined number of
iterations or if centroids do not change at a given iteration. At the beginning,
centroids are randomly picked.

The major drawback of K-means is that it assumes the a-priori knowledge
of the number K of clusters one is interested in. The proposed algorithm tries
to overcome this limitation using an agglomerative approach. We start by de-
composing the hyper-space in a large number of clusters, K0. Then, we incre-
mentally merge the two closest clusters until one cluster only remains. A similar
technique was successfully applied to the network measurement context in [14].
The pseudo-code of the algorithm is:

K = K0
centroids, labels = K-means(K, data)
while (K > 1)

c1, c2 = closest_centroids(centroids)
centroids = merge_centroids(centroids, c1, c2)
labels = redo_labeling(data, centroids)
K = K - 1

We start running K-means with K0 = 100 randomly chosen centroids, i.e.,
we force the partitioning of the hyper-space in a large number of small clusters
that are extremely pure. The algorithm then iterates merging at each step the
two closest clusters: at step K, the algorithm looks for the two closest centroids
c1, c2, it merges them into a new centroid positioned at the geometric barycenter
of c1 and c2; then points are reassigned to the new set of K − 1 centroids. The
algorithm continue the aggregation until 2 clusters only remain.

The rationale behind the algorithm is that two centroids which are very close
are likely to be associated to the same final cluster. By monitoring the value of
the closest distance between centroids at each iteration step, and using this as
an indicator function, it is possible to decide the optimal value of K, namely
Kc, to stop at.
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In our scenario, Kc represents the estimated number of protocols that are
present in the dataset. Let the smallest distance between centroids be defined as

γK = (dK − dK−1)2 (3)

where dK is the Euclidean distance between the two closest centroids at step K
of the algorithm. γK defines our indicator function. Since the distance between
points (and clusters) that correspond to the same protocol is expected to be
smaller than the distance between points that correspond to traffic generated by
different applications, large values of γK suggest that the algorithm is artificially
enforcing the merging of two clusters that are quite different from each other.

Notice that only a single run of K-means is executed at the beginning to ob-
tain the initial set of clusters. At each iteration, the algorithm works only on
the centroids, and this has two main benefits. First, we can better control the
modification on the space due to aggregation. In fact, the K-means algorithm is
subject to “oscillation effect”, i.e., small modifications in the centroid position
could lead to large transformations in the cluster geometry. By using centroids
only we avoid to re-assign samples to centroids, so that the quality of the initial
clustering is better preserved. In addition, by considering centroids only we
reduce the computational cost by several order of magnitudes, we handle O(K0)
centroids instead of O(N) samples (N >> K0). Moreover, the K-means com-
plexity depends on the maximum number of iterations I (which in our case we
set to 100), so that its complexity is O(IN). In our experiments on an AMD
Athlon-64 X2 Dual Core Processor 4200+, we elaborated several thousands of
points present in a 15 minute long traffic traces in less than 3 minutes, the largest
majority of the time being devoted to the initial K-Means run. Given that the
code used can be further optimized, the result is promising and suggests that
the algorithm might be applied to real-time monitoring.

Finally, K-means is known to suffer from the choice of the initial centroid
position. Usually initial centroids are randomly chosen so that different starting
conditions can lead to different clustering. In our scenario, since we select a
large number K0 of clusters, the bias introduced by the selection of the initial
centroids is minimal. We performed some tests by running the algorithm with
different initial random seeds and the results (not reported for the lack of space)
show that there is practically no influence on the initial choice.

5 Experimental Results

5.1 Datasets

The results presented in this paper refer to datasets extracted from two traces,
called ISP-Trace and P2PTV-Trace; the traces are described in Table 1.

ISP-Trace is a real traffic trace collected from the network of an Italian large
ISP which offers converged services, in which data, native VoIP, and IPTV share
a single broadband connection. This dataset is representative of a very heteroge-
neous scenario, in which users are free to use the network without any restriction.
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Table 1. Description of the ISP-Trace (a) and P2PTV-Trace (b)

Protocol #flows ×103 (%) Mbytes (%) #endp. ×103 (%) #sign. ×103(%)

(a)

BitTorrent 217 (3.39) 40 (0.19) 34 (4.14) 22 (0.33)
DNS 260 (4.05) 185 (0.88) 153 (18.79) 31 (0.47)
eMule 5200 (80.96) 936 (4.43) 476 (58.56) 61 (0.91)
RTCP 8 (0.13) 46 (0.22) 6 (0.73) 25 (0.38)
RTP 9 (0.14) 18244 (86.26) 7 (0.86) 6222 (92.14)
Unclassified 728 (11.34) 1698 (8.03) 137 (16.92) 390 (5.78)
tot 6422 (100.00) 21149 (100.00) 813 (100.00) 6751 (100.00)

(b)
PPLive 27 (78.52) 1585 (32.96) 184 (38.90) 23 (28.30)
SopCast 5 (14.87) 2282 (47.43) 176 (37.21) 48 (57.46)
TVants 2 (6.61) 943 (19.61) 113 (23.89) 12 (14.24)
tot 34359 (100.00) 4810 (100.00) 473 (100.00) 83 (100.00)

It therefore is a very challenging scenario for traffic classification. In this paper
we present results considering a dataset obtained monitoring a PoP for 24 hours
in October 2007, during which about 21GB of UDP traffic and 813,000 end-
points were monitored. Some known protocols (BitTorrent, eMule, RTP, RTCP
and DNS) have been extracted from the aggregated trace using Tstat [15], a
traffic classifier that combines a number of DPI mechanisms with statistical
techniques. The classification has been manually cross-checked to have a high
confidence in the ground truth. These protocols account for more than 90% of
the total volume, as shown in Table 1. The remaining 10% of traffic has been
labeled as “unclassified”.

P2PTV-Trace was collected during ad-hoc experiments that were organized
to observe the performance of popular P2P-TV applications, namely PPLive,
SopCast and TVants. The resulting dataset [16] consists of packet level traces
collected from more than 45 PCs running P2P-TV applications in 5 different
Countries, and it is representative of a wide range of different scenarios. Being
the result of active experiments, the trace contains only a single protocol at a
time and we have a perfect knowledge about it.

The datasets extracted from the two traces are disjoint. In fact, there is
no P2P-TV traffic in the ISP-Trace. When needed, we can artificially “inject”
P2P-TV traffic from the P2PTV-Trace into the ISP-Trace to increase the number
of known protocols when assessing the performance of the clustering algorithm.

5.2 Evaluation of the Proposed Approach

Fig. 1(a) shows the evolution of the indicator function during the application of
the algorithm to ISP-Trace considering a 10 minute long trace. The minimum
distance between clusters is very small for values of K > 20, suggesting that
the algorithm is merging clusters whose centroids are very close. Instead, for
K ≤ 20, the algorithm starts merging cluster centroids which are quite far from
each other, suggesting an improper and artificial merging.



Mining Unclassified Traffic Using Automatic Clustering Techniques 157

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

γ

K

(a)

 0

 20

 40

 60

 80

 100

Pr
ec

is
io

n 
[%

]

RTPC
eMule

RTP
BitTorrent

DNS
Unknown

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100
R

ec
al

l [
%

]
K

RTCP
eMule

RTP
BitTorrent

DNS
Unknown

(b)

Fig. 1. Evolution of the clustering algorithm: the indicator function (a) and classifica-
tion accuracy in terms of precision and recall (b)

To confirm this intuition, the homogeneity of each cluster is evaluated against
the endpoint classification obtained by Tstat (our ground truth). Fig. 1(b) re-
ports the precision (top) and recall (bottom) performance indexes, defined as

Precision =
true pos

true pos + false pos
Recall =

true pos

true pos + false neg
(4)

for different values of K . Precision is a measure of exactness or fidelity, whereas
recall is a measure of completeness; these two measures complement each other.
A precision of 1.0 for a class C means that every item labeled as belonging to
C does indeed belong to C. It however says nothing about the number of items
from class C that were not labeled correctly. A recall of 1.0 means that every
item from class C was labeled as belonging to class C. It however says nothing
about how many other items were incorrectly labeled as belonging to class C.

Consider Fig. 1(b); two observations hold. First, for K > 20, the fidelity
and completeness of the identified clusters is very high, proving that the Kiss
signatures accurately represent different protocols, and that traffic generated by
different applications can be easily clustered. Second, the abrupt decrease of
both precision and recall observed in Fig. 1(b) for K ≤ 20 confirms that some
clusters corresponding to different protocols are artificially merged, causing the
formation of impure clusters.

To further assess the goodness of the approach, we inspect the behavior of
the indicator function considering datasets in which we progressively add traffic
of various applications. We start by considering a dataset containing only Sop-
Cast and TVants traffic; we then add, in sequence, the traffic of PPLive, RTP,
BitTorrent, DNS and eMule to the dataset. For each traffic mix we run our al-
gorithm. The results are reported in Fig. 2 for K ≤ 20, only. The figure shows
that the indicator function abruptly increases for values of K that are strongly
related with the number of traffic classes. A simple thresholding mechanism on
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Fig. 3. Evolution of the clustering algorithm over different time windows of the ISP-
Trace without (a) and with (b) the unclassified traffic

the indicator function can be adopted to automatically detect the value Kc. As
an example, the figure reports a threshold of 0.15 that resulted very effective in
our tests.

The Table on the right of Fig. 2 reports the suggested number of clusters Kc

obtained with the threshold γ = 0.15, the corresponding recall and precision are
also indicated. Results confirm that the value of Kc increases with the number
of traffic classes. The resulting precision and recall are extremely high, and a
marginal decrease is observed only when considering more than 5 protocols. This
is due to BitTorrent traffic which is sometimes confused with TVants traffic
whose Kiss signatures result similar. Nevertheless, the performance are very
good.

Interestingly, the number of identified clusters is larger than the actual number
of applications. This is due to single applications using multiple protocols with
different formats, e.g., signaling is different respect to data messages. The Kiss
signatures are therefore different, and the clustering algorithm correctly identifies
separate clusters.

Finally, we repeat the experiment considering other different 10-min-long
traces extracted from the ISP-Trace. The goal is to investigate if the indica-
tor function always correctly suggests the number of cluster to use. Fig. 3(a)
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reports the indication functions obtained for the three windows considering the
aggregation of the 7 considered traffic classes. No unclassified traffic is present.
We can see that the suggested Kc is consistent among all the experiments. In-
stead, Fig. 3(b) reports the indicator functions when unclassified traffic is present
too. In this case, since different traffic mixes are present during different periods
of time, higher noise is present with respect to the previous case and different
values Kc are selected in different windows. In conclusion, the indicator function
suggests an optimal number of clusters which changes depending on the actual
traffic mix. Thus, a conservative large number of clusters is preferable, especially
when considering different time windows. Moreover, note that in Fig. 3(b) the
number of suggested clusters is never higher than 40.

5.3 Comparison with Other Clustering Techniques

The automated selection of the optimal number of clusters is not new in litera-
ture. Several score indexes have been proposed to precisely correlate the goodness
of the clustering with the number of used clusters. Examples of these indexes
are: the Bayesian Information Criterion (BIC) adopted by the XMeans algo-
rithm [13] and the Normalized Mutual Information (NMI) [3]. In this work, we
are interested in investigating the automated approaches which do not require
the a-priori knowledge of the points’ labels (that is instead required by the NMI).
We evaluated the performance of both XMeans and NMI; in addition, we con-
sidered also the DBScan algorithm. XMeans shows similar performance as our
algorithm in terms of recall and accuracy. However, the number of identified
clusters is typically much larger than the one obtained by our algorithm. For
example, XMeans accuracy is higher than 95%, but at least 10 more clusters
are identified, i.e., 50% more than with our proposal. Considering NMI, the ac-
curacy is lower than 95% when 25 clusters are used, as suggested by the NMI
technique. With 40 clusters, performance of the NMI-based method is similar to
the one of our algorithm. Finally, DBScan performed poorly achieving only 85%
of accuracy with the best parameter setting.

Notice also that all previous algorithms are computationally more expensive
than our proposal. In conclusion, the proposed algorithm is completely auto-
mated, does not require any knowledge of the points labels and seems a good
trade-off among clustering accuracy, number of clusters and complexity.

5.4 Clusters Distances

In this section, we investigate the geometry of the clusters of points identified by
our algorithm. The results presented in this section are obtained using K = 40
(a conservative large value) and refer to a single time window of ISP-Trace. For
the other time windows, not shown here for the sake of brevity, we obtained
similar results.

We start by considering the size of each cluster. Fig. 4 shows the cumulative
distribution function of the normalized Euclidean distance between each point
and its centroid. As we can see, half of the points in the dataset are very close to
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Fig. 5. Distance between centroids of different clusters, for 40 clusters obtained by
running the algorithm on IPS-Trace with K = 40

theirs centroid, with a distance smaller than 20% of the cluster space size. The
table on the right of Fig. 4 reports some statistics about the clusters geometry
according to the DPI classification. In particular, the second column reports the
number of clusters identified for each application, the third column reports the
number of small clusters, i.e., clusters with a radius smaller that 0.2, and the last
column gives the number of not-dense clusters, i.e., clusters with less than 10
samples. BitTorrent and RTP are mapped into a single cluster, while the “un-
classified” is composed of a set of small, often not-dense, clusters. Interestingly,
eMule is highly partitioned too. Investigating further, we noticed that each clus-
ter corresponds to a different protocol which eMule uses for different purposes,
e.g., one protocol is used to exchange messages with the server, another one is
used to exchange traffic with peers.

To better understand the possible overlapping between the clusters, Fig. 5
reports the distance between pairs of centroids. The distance has been mapped
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Fig. 6. Example of evolution of the centroids position

onto a gray scale map in which the darker the color is, the nearer the centroids
are. The image is symmetrical with respect to the main diagonal, where all
points have a distance of 0 by definition. Clusters are ordered based on their
type of traffic so that clusters referring to the same application are nearby;
dashed lines are used to delimit the applications. The only blocks which include
nearby clusters are related to the same application.

In conclusion, we can say that the Kiss signatures map different protocols
in different compact clusters of the hyper-space. The geometry of the clouds is
strictly related to the characteristics of the application, but the signatures are
naturally clustered in pure areas which do not overlap.

6 Mining the Unclassified Traffic

In this section we show how the proposed technique can be used to monitor
the traffic evolution in time and detect the presence or absence of traffic in
different periods. To do so, we measure the modifications of the clouds obtained
by running the algorithm over consecutive time windows. We consider 1 hours of
traffic divided into six 10-min-long traces and for each trace we run our algorithm
using K = 40, as previously described. The centroids obtained for each time
window are then compared with centroids identified in the previous time window.
Each centroid is associated to the closest cluster in the previous set according
to their geometric distance. This allows to detect changes between the current
and the previous cluster placement.

Fig. 6 reports some interesting examples; it shows the distance of some selected
centroids in consecutive time windows. For example, the position of centroid A
and centroid B is practically the same over time. Verifying the corresponding
clusters, we found out that samples of cluster A and cluster B are associated to
BitTorrent and RTP, respectively; since in the traffic traces those applications
are always present, the corresponding centroids are always present and more or
less in the same position.

Consider now the case of the cluster with centroid C. The minimum distance
among the centroid C in the first and the second time window is very high,
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suggesting that in the second time window C is associated to a cluster of traffic
that was not present during the previous time window. When comparing centroid
C to its closest centroid at time window 3, we see that it moved very little.
Similarly, considering time windows 3 and 4, centroid C is still referring to the
same cloud of samples. Only in time window 5, the centroid C seems to disappear,
since the closest centroid is very far from its position during time window 4. This
suggests that some new traffic appears at the 2-nd time window, it is present
during the 3-rd and 4-th time window, when it disappears again. Investigating
further, we discovered that the traffic was generated by a Skype call that lasted
for that period of traffic. Centroid C then refers to Skype Voice protocol.

Similar conclusions can be drawn following centroid D and centroid E evo-
lution. Comparing their position during the 4-th and the 5-th window, we can
observe that they moved little, i.e., they refer to the same cluster. Manual inspec-
tion revealed that the traffic of cluster-D corresponds to STUN protocol - Simple
Traversal of User Datagram Protocol that was initiated by some P2P client that
was alive in time window 4 and 5. Centroid E refers, instead, to traffic between
hosts that used port 16567. This latter is composed by both short packets and
much bigger packets, which might be related to Battlefield2 protocol.

Beside these examples, the methodology identified other sets of clusters and
centroids which were always placed in the same zone across consecutive the win-
dows. Some of these clusters were due to long-lived, single connections carrying
many bytes, while others contained P2P-like flows, i.e. endpoints exchanging
limited amount of data with an large number of hosts. Unfortunately, because
of the limited amount of available payload, we are not able to further identify
the application that generated these flows.

These examples show how we could successfully employ our technique to get
insights into the unclassified traffic that Tstat DPI and behavioral classifiers can-
not identify. In terms of traffic volumes, we could correctly identify and clusterize
more than the 40% of unclassified traffic.

7 Conclusion

In this paper, we presented a clustering methodology to partition a traffic aggre-
gate in classes according to the generating application. Using statistical signa-
tures as those of Kiss, one of our classifiers, the methodology (that is completely
unsupervised) is based on the K-Mean clustering algorithm enhanced through a
mechanism to detect the optimal number of clusters.

Results show that the traffic partitions are very accurate. and confirm that the
statistical signatures are effective in capturing the differences among application
protocols. Moreover, our results prove that the methodology can be effectively
used in different contexts. First of all, it is helpful to mine the unclassified traffic,
i.e. the traffic that traditional DPI or a behavioral classifiers cannot recognize.
Indeed, it helped us revealing 40% of the traffic we could not classify with our
classifiers. Second, the algorithm can reveal the born of new applications, as well
as the changes of existing ones.
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