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Abstract. This paper proposes KISS, a new Internet classification method. Moti-
vated by the expected raise of UDP traffic volume, which stems from timeemo
tum of P2P streaming applications, we propose a novel statistical palyéosdt
classification framework, targeted to UDP traffic.

Statistical signatures are automatically inferred from training data, by t@sne
of a Chi-Square like test, which extracts the protocol “syntax”, but igadhe
protocol semantic and synchronization rules. The signatures feedisaoteen-
gine based on Support Vector Machines. KISS is tested in differentagos,
considering both data, VoIP, and traditional P2P Internet applicati@sil® are
astonishing. The average True Positive percentage is 99.6%, with tisecage
equal 98.7%. Less than 0.05% of False Positives are detected.

1 Introduction

Last years witnessed a very fast-paced evolution of newrlateapplications, ignited
by the introduction of the very successful P2P networkingg@@m and fueled by the
growth of Internet access rates. This entailed not only @ deange of the Internet ap-
plication landscape, but also undermined the reliabiltshe traditional Internet traffic
classification mechanisms, typically based on Deep Paclspiection (DPI) such as
simple port-based classification. Indeed, DPI classificais deemed to fail more and
more due to proliferation of proprietary and evolving pagts and the adoption of
strong encryption techniques [1, 2].

In previous proposals, UDP has usually been neglected or tfhapplications run-
ning over TCP. Motivated by the expected raise of UDP traffiume, we propose a
novel classification framework that explicitly targetsdplived UDP traffic.

Recalling that a protocol specifies the rules governingsiimeax, semantics, and
synchronization of a communication, we propose to extract the L7-protasyotax
while ignoring the actual semantic and synchronizatioesuThis is achieved by sta-
tistically characterizing the frequencies of observedigalin the UDP payload, by
performing a test similar to the Pearsor'stest. They? values are then used to com-
pactly represent application fingerprints, which we cali-Suare Signatures - ChiSS
(pronounced as in KISS). Compared to classic DPI classifl€liSS uses statistical
signatures, rather than deterministic values. This makemie robust to protocol di-
alects/evolution, eventual packet sampling, drop or reidnd, and it does not assume
to observe specific packets in a flow (e.g., the first few pagket
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Fig. 1. Scheme of signature extraction process (left) and KISS learning stgp8.(

After the fingerprints have been extracted, proper classifin must be achieved,
i.e., individual items should be placed into the most likelgss. A huge set of method-
ologies are available from the literature, that span frampée threshold based heuris-
tics [3], to Naive Bayesian classifiers [2, 4], to advancedistical classification tech-
niques [5]. In this paper, we rely on Support Vector Machifi®@gMs) [5], which are
well known in the statistical classification field, and orndgently have been adopted in
the context of Internet traffic classification.

2 KISS Description

2.1 Chi-Square Signatures Definition

The signature creation is inspired by the Chi-Square statisest. The original test
estimates the goodness-of-fit between observed samplesarsfdam variable and a
given theoretical distribution. Assume that the possikiecomes of an experiment are
K different values an@,, are the empirical frequencies of the observed for values, ou
of M total observationsY_ O, = M). Let E}, be the number of expected observations
of k for the theoretical distributiont, = M - py, with p;, the probability of valuek.
Given thatM is large, the distribution of the random variable

K 2
o (O — Ey)
X= T By @)

k=1

that represents the distance between the observed erhpinidaheoretical distribu-

tions, can be approximated by a Chi-Squareyardistribution with X — 1 degrees of

freedom. In the classical goodness of fit test, the value¥ afre compared with the
typical values of a Chi-Square distributed random variathle frequent occurrence of
low probability values is interpreted as an indication ofal ffitting.

In KISS, we build a similar experiment analyzing the contirgroups of bits taken
from the packet payload we want to classify; we then checkiedistance between the
observed values and uniformly distributed bits. In othemte we use a Chi-Square like
test to measure the randomness of groups of bits as an itgsiiinate of the source
entropy.

Chi-Square signatures are built frostreams of packets directed to or originated
from the same end-point. The firat bytes of the packets payload are divided iGto
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Fig. 2. Evolution in time (left) and dispersions in space (right)dfof two groups extracted from
the second byte of UDP payloads.

groups of b consecutive bits each; a grogan take integer values |, 2° — 1]. From
packets of the same stream, we collect, for each ggotipe number of observations of
each value < [0,2° — 1]; denote it byo§g>. We then define a window @ packets, in
which we compute:

- ob_1 (Ol(g) _ Ei)2 P . "
Xg = gt E; O 2b
and collect them in the KISS signature vector:
Y:[XLXQa"'aXG} (3)

The left plot of Fig. 1 shows a schematic representation ®I8S signature ex-
traction.

The rationale behind KISS signatures is that they allow tomatically discover
application layer message header without needing to caret @pecific values of the
header fields. Indeed, in the first bytes of UDP payload thetlkda application header
containing fields that can be: constant identifiers, cosntgords from a small dictio-
nary (message/protocol type, flags, etc), or truly randdoregcoming from encryption
or compression algorithms. These coarse classes of fiefdbec@asily distinguished
through the operation in (2). For example, left plot in Figeports the value of two
4-bit long groups belonging to two different traffic proté&anamely DNS and eMule,
versusC. The steep lines corresponding to groups taken from an ebttdam refer
to fields that are almost constant. In this case, the longeexiperiment is (larget),
the larger the distance from the uniform distribution is,,ithe bits are far from being
random. In the same plot, observe the lines referring to DAfBd. The lowest one has
a very slow increase witty, its behavior is almost perfectly random, the valueg of
being compatible with those of a Chi-Square distributione Douncing line, instead,
corresponds to the typical behavior of a counter. The coatjmut (2) over consecutive
groups of bits of a counter cyclically varies from very lomues (when all the val-
ues have been seen the same number of times) to large vaheepefiodicity of this
behavior depends on the group position inside the counter.

While randomness provides a coarse classification overithdiYgroups, by jointly
considering a set aff groups through the vectgy the fingerprint becomes extremely



accurate. To justify this assertion, let observe the rigitip Fig. 2, which shows signa-
tures generated using = 80 packets of a stream. Points in the figure are plotted using
(x2, x3) as coordinates; each point corresponds to a differentrstrBaints obtained
from DNS streams are displaced in the low left corner of thog; gdoints from eMule
are spread in the top part of the plot. Intuitively, differprotocols fall in different areas
that are clearly identified and easily separable.

The signature creation approach previously presentedsiscban a number of pa-
rameters whose setting may be critical. These are theianker used to set them:
Bits per group (b = 4), whose choice trade-offs opposite needs. From one Hand,
should be as closest as possible to typical length of profadds, e.g.,b should be 4
or 8 or a multiple of 8. From the other haridshould be small enough to allow that the
packet windowC' over which the Chi-Square test is statistically significanot too
large, so that streams can be classified even if they are adbng, they are classified
in short time and live classification is possible. Thus, weseb = 4.
Packet window (C = 80). While we would like to keep the packet window as small as
possible, the/ test is considered to be statistically significant if the bemof samples
for each value is at least 5. Having choses 4, in order to havel; = C'/2° equal to
5, we need” to be equal to about 80. Sensitivity ¢bis evaluated in the Sec.4.1.
Number of bytes per packet (V = 12). In general, classification accuracy increases
with the number of considered bytes per packet. However ptexity of the classi-
fication tool increases also with thg, in terms of both memory and computational
complexity. As a convenient trade-off we chodSe= 12 so, givenb = 4, this values
corresponds t6: = 24 groups for each signature. One motivation for the choseueval
is because it allows to analyze the most important part of &I@PDNS headers. Even
more,N = 12 allows to collect 20 bytes of the IP packet payload (12 byt8%ytes of
the UDP header) that is the minimum size of the TCP headerraypical value used
by measurement tools. Notice that the optimal valuévoflepends from the targeted
applications. For example, DNS and eMule can be clearlytifiet by only consider-
ing (x2, x3) as right plot of Fig. 2 shows. The selection of which groupmtiude in
X is then a complex task that is left out as future work.

2.2 KISS Model Generation for Classification

The decision process in KISS is driven by a Support Vectoriax(SVM). The SVM
approach is based on the idea of mapping training sampldsssamples of two dif-
ferent classes are displaced in compact areas separatgpdaplanes. Since SVM is a
supervised learning method, a training set must be usedergie the model used for
the classification task. To generate a KISS model we opesatkedched in right plot of
Fig. 1. We start by considering some streams that belong teea get of applications
we want to classify. The streams could either be generatgogrose (e.g., by run-
ning the applications), or extracted from real traffic tsati'rough some other reliable
classification engine. Streams are then fed inthuanker, whose role is to derive the
KISS signatures as in (3). This signature set is than ranglsarhpled (according to a
uniform distribution) so as to select th@ining set, whose size is 300 by default (the
impact of this value will be discussed in Sec. 4.1). The trajrset is then fed to the



SVM learning phase after which the KISS model is produceapdes used for training
will not be used for the model validation.

Notice that the KISS training phagartitions the signature space into a number of
regions equal to the number of protocol offered during theing: this implies that a
sample willalways be classified as belonging to any of the known classes. Thuaj-a
ditional region is needed to represent all samples that tibelong to any of the above
protocols, i.e., to represent all the other protocols. Tthestraining set must contains
two types of signatures: i) the ones referring to traffic getesl by the applications to
classify; ii) the ones representing all the remaining tecaffihich we refer to a®ther —
which represents the set of applications that we are nateisited in classifying.

3 Testing Methodology

We developed an ad-hoc oracle to derive the ground truthighased on DPI mecha-
nism, and to manually tune it and to double check its perfogeaThe oracle is used
to extract desired protocols and Other protocols, whichtee used as ground truth to
assess KISS performance.

3.1 Testing Datasets

Real Traffic Traces (RealTrace)were collected from the network of an ISP provider
in Italy called FastWeb. This network is a very heterogesemenario, in which users
are free to use the network without any restrictions, antetigea large portion of VoIP
and P2P traffic. It therefore represents a very demandingasiceconsidering traffic
classification. A probe node has been installed in a PoP, iohwhore than 1000 users
are connected. The measurements presented in this papetaef dataset collected
starting from 26th of May 2006, and ending on 4th of June 200®& trace contains
6455 millions UDP packets, 77.6 millions flows, 56368 endfmi Among the most
popular applications generating UDP traffic, we selecfeelMule, ii) VoIP (over RTP),
and iii) DNS protocols. Indeed, these three protocols abm@unt for more than 80%
of UDP endpoints, 95% of UDP the flows, and 96% of the total URRxte.

Testbed Traces (P2Ptracelince we are also interested in evaluating the perfor-
mance of KISS when dealing with new protocols, we selected;age study, some
popular P2P-TV applications (hamely PPLive, Joost, Sop&as TVants). Since none
of the selected applications was available at the time dftraffic trace collection, we
gather such traces with a testbed. The dataset consistekdtdavel traces collected
from more than 40 PCs running the above mentioned P2P-T\icapipihs in 5 different
Countries, at 11 different institutions during the Napar&/7] project.

DPI oracle has been implemented in Tstat [8], and its performance weareuaily
fine tuned and double checked. In particular, for DNS we relginple port classifi-
cation, since UDP port 53 was only used by the DNS system g@@96 whereas for
RTP classification we rely on the state machine described]inr{stead for eMule the
system proposed in [10, 11] has been developed and adapteslsoenarib

! The eMule client used by FastWeb users has been optimized to exploitdtasétivork ar-
chitecture. This entailed a modification to the KAD protocol, called KADu. t@&-shelf DPI
signatures have been then adapted to cope with the modified protocol.



Table 1.Confusion matrix considering the RealTrace case (left) and P2P-T\Viegpipns (right)

Tot IRTP eMule DNS Othér - S'I:;(:i‘]\lgo;slt PPLive SopCast TVants ;Dzher
RTP838999.9 0.05 - 0.05 oost : - - B
PPLive84452 - 100.0 - - 1
eMulg7167 - 99.9 - 041
j SopCasB4473 - - 99.9 - 01
DNS|4491 - - 98.7 1.3
Othel1474 - i - 100.d TVantg27184 - - - 100.0
- Other 1.2M| 0.3 - - - 99.7
4 Results

Considering RealTrace dataset, left Tab. 3.1 summarizesegults reporting the con-
fusion matrix. Each row corresponds to a sub trace that vessified according to the
oracle. Columns report the total number of samples in eadschnd their correspond-
ing percentages classified by KISS for each of the four ctasgglues on the main
diagonal correspond to True Positive percentage (% TP)ewaltler values details the
False Negative percentage (%FN) and False Positive pagei{%FP). For example,
in the left table, the first row says that the 99.9% of samptéseted considering RTP
flows only has been correctly classified by KISS (i.e., thaselaue Positives); the re-
maining 0.1% of samples has been classified as eMule and @tecols with 0.05%
each (i.e., those are False Positive considering eMule dhdr@lasses). Overall re-
sults are astonishing. The average True Positive peroen$a®9.6%, with the worst
%TP equal to 98.7%, since 1.3% DNS endpoints are miscladsificOther (58 sam-
ples over 4491 tests). %FP=0.05%: all samples in the Otlassdias been correctly
classified, while 5 RTP instances have been misclassifieMate

To prove the KISS flexibility, we explore its ability to idéfyt traffic generated by
P2P-TV applications. Since these are novel applicatiotciwfollow a proprietary
and closed design and might exploit obfuscation and eniorypechniques, the design
and engineering of a DPI mechanism would be daunting anémelly expensive. On
the contrary, training KISS to identify P2P-TV traffic is ¢gistraightforward. For each
considered application, a packet trace is captured by gimpining the application.
Those traces are then used to train the SVM. To test the KI8i8/ab classify P2P-
TV traffic, all traces from the P2Ptrace dataset are useddtate the True Positive.
The RealTrace is instead used to evaluate the False Positioe we assume no P2P-
TV traffic could be present during 2006. Results are sumradriz the right Tab. 3.1,
which reports percentages averaged over more that 1.nslbf tests. Also in this
case, results are amazing. KISS is able to correctly clas®ife than 98.1% of samples
as True Positives in the worst case, and only 0.3% of Falsiéi@ssare present.

4.1 Parameter Sensitivity

Among the parameters that are part of KISS, the number of lesnipto evaluate
the signature is the most critical one. Indeed, to have a gstithate of the observed
frequencies, at least 5 samples for each value should bectedl (in case a uniform
distribution is considered). This leads € > 80. However, since in KISS we are
not performing a real Chi-square test, we are interestethsemving the classification
accuracy of KISS when reducing the number of observationtlagdfore allowing an
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Fig. 3. Classification accuracy versas(on the left) and versus the training set size (on the right).

earlier classification. Left plot of Fig. 3 reports the % TPuall-known protocols, and
the %FP, without distinguishing among protocols. Configeimtervals are evaluated
over 250 different RealTrace subtraces each comprising iiian 100 samples. The
Figure clearly shows that the %TP is almost not affectedndeed, the syntax of the
considered protocols is very different and the SVM haliptloblem in distinguishing
them even ifC is small. However, the %FP is much more sensible tothealue,
and only forC > 80 it goes below 5%. Similarly, it is interesting to observe how
performance changes with training sets of different sizesuRs are plotted in right
plot of Fig. 3, which reports the % TP and %FP for increasiafming set size. The plot
shows that KISS is able to correctly classify RTP, DNS and keNhaffic with excellent
%TP, (average %TP95%) even with 5 samples training sets. Also in this caseemor
problematic is the correct classification of the Other tecaffince the False Positive
percentage goes below 5% only when the training set congpaiskeast 100 samples.
Intuitively, the Other traffic is far more heterogeneoumthraffic of a given protocol,
and thus a larger number of samples are required to destribe i

Given the connectionless characteristic of UDP, one egpibett connection last
for few packets. Analyzing the RealTrace dataset, 40% opeimts has only 1 packet,
while only 5% have at least 80 packets. However, these lattdpoints account for
more than 98% of volume ibytes of traffic. This clearly shows that, while KISS is not
suitable for the classification of short-lived connectioitsan however successfully
target the small fraction of endpoints that generate thgelamajority of traffic.

5 Conclusions and future works

We presented KISS, a novel classifier that couples a stactestcription of applica-
tions to the discrimination power of Support Vector Maclsingignatures are automati-
cally extracted from a traffic stream by the means of stoahtestt that allows applica-
tion protocol syntax to emerge, while ignoring protocol @yronization and semantic
rules. A SVM is then used to classify the extracted signatuesading to exceptional
performance.

KISS showed excellent results in different scenarios, iciemg both data, VoIP,
and P2P filesharing applications. Moreover, KISS also pi@émost perfect results
when facing new P2P streaming applications, such as Jdelsiy®, SopCast and TVants.
Compared to classic DPI, KISS is more flexible, since it eei@ a statistical char-



acterization of application layer protocol payload, tliere being robust to protocol
evolution/dialects, eventual packet reordering/lossesmpling.

On the other side, the classification results are strondgteae to the ground truth
used to train the SVM classifier. This is particularly truetfee background class which
should represent all protocols that are not the target afsdiaation. This set of pro-
tocols can change in time so that a static trainset can betountdated”. The same
problem exists even for well known applications becausefficdt to cover all the
possible behaviour of an application. This suggest the néadoopback in the model
creation so that the trainset can be adapted accordinglyraffee changes. These is
something we are interested of studying in the future.

Another possible optimization is the application of a featselection algorithm to
identify the most significative chi-square features. Thisudd speed up the computa-
tion time of the signatures and decrease the memory regeivesm

The classification method proposed is applied only on UDfidraut, even with
some restrictions, it can also be applied to TCP. In this,cdse to the connection
oriented nature of TCP, the signature can be computed usigdhe first(s) segment(s)
of each flow. This subject is already under investigationiboutside the scope of this
paper.
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