
FENXI: Deep-learning Traffic Analytics at the edge
Massimo Gallo

Huawei Technologies Co. Ltd
France

massimo.gallo@huawei.com

Alessandro Finamore
Huawei Technologies Co. Ltd

France
alessandro.finamore@huawei.com

Gwendal Simon
Huawei Technologies Co. Ltd

France
gwendal.simon@huawei.com

Dario Rossi
Huawei Technologies Co. Ltd

France
dario.rossi@huawei.com

ABSTRACT
Live traffic analysis at the first aggregation point in the ISP
network enables the implementation of complex traffic en-
gineering policies but is limited by the scarce processing
capabilities, especially for Deep Learning (DL) based analyt-
ics. The introduction of specialized hardware accelerators
i.e., Tensor Processing Unit (TPU), offers the opportunity to
enhance processing capabilities of network devices at the
edge. Yet, to date, no packet processing pipeline is capable
of offering DL-based analysis capabilities in the data-plane,
without interfering with network operations.

In this paper, we present FENXI, a system to run complex
analytics by leveraging TPU. The design of FENXI decouples
forwarding operations and traffic analytics which operates
at different granularities i.e., packet and flow levels. We con-
ceive two independent modules that asynchronously com-
municate to exchange network data and analytics results,
and design data structures to extract flow level statistics
without impacting per-packet processing. We prototyped
and evaluated FENXI on general-purpose servers consider-
ing both both adversarial and realistic network conditions.
Our analysis shows that FENXI can sustains 100Gbps line
rate traffic processing requiring only limited resources, while
also dynamically adapting to variable network conditions.
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1 INTRODUCTION
In the last decade, Deep Learning (DL) has become a fun-
damental analytics technique in some fields of computer
science such as computer vision and natural language pro-
cessing. DL-based analytics are rapidly gaining momentum
in the network community too, with the promise of enabling
complex Artificial Intelligence (AI)-based traffic engineering.
Proposals that use DL models to improve traffic engineer-
ing include application identification [10, 32], analytics that
enables traffic differentiation [26, 46], malware and attack

detection [19, 27] used by firewall applications, and anomaly
detection [41] by troubleshooting tools. However executing
pre-trained DL models (a.k.a. inference) is still a complex
operation, which requires significant processing capabili-
ties that are not commonly found in the network edges. In-
deed, the research community has concentrated efforts in
designing systems that delegate inference to external devices,
typically hosted in a cloud environment [16, 28].
We consider traffic monitoring operated at the network

edge, typically in the first aggregation point after the so-
called “last-mile” in broadband networks. Despite the in-
creasing interest in both industry and research communities,
the adoption of DL has yet to transform network manage-
ment and trafficmonitoring in this scenario. On the one hand,
current approaches which offload DL inference to the cloud,
alleviate the demand for increasing physical resources at the
edge [11]. On the other hand, cloud offloading is both inef-
fective for latency-sensitive use-cases (e.g., when decisions
should be taken within a few Round-Trip Time (RTT) of the
flow life cycle) and unable to deal with the constant increase
of broadband link capacity (e.g., resulting in overwhelming
control traffic to the cloud services) as pointed out in [45].
In this paper we study the design of an inference system

that leverages low cost and low power consumption hard-
ware accelerators [34] such as edge Tensor Processing Unit
(TPU) [3, 4], which will be included in the next-generation
network cards [7]. We design, implement, and extensively
benchmark FENXI, a system for DL traffic analytics at line
rate. With FENXI, we revisit packet processing pipelines de-
sign from the Network Interface Card (NIC) to the storage
of the inference result, contributing to the field in two ways:
(i) we report a deep dive into a challenging system with
multiple contrasting objectives, and (ii) we propose practical
solutions to every element of the system.

Contribution #1: By implementing and testing FENXI
under realistic and extreme conditions, we reveal the com-
plexity of DL analytics in edge network scenarios.
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• We benchmark DL hardware accelerators: a Graphic Pro-
cessing Unit (GPU), a TPU, and a multi-core CPU. We
used a state-of-the-art DL model designed for traffic ana-
lytics [10] to test the performance of the accelerator. The
benchmark report in Section 2 highlights the trade-off
between inference speed (to sustain throughput), delay (to
meet application requirements), and energy consumption.
• We examine the characteristics of real network traffic to
identify system requirements. Our analysis emphasizes
two requirements: (i) high-throughput operations consid-
ering the number of packets per second (since information
is extracted from individual packets) and the number of
flows per second (since analytics apply on flows). (ii) low-
delay operations since the delay in inferring the analytics
is not only a matter of processing a data stream but also
an application requirement that comes from the traffic
characteristics and the analytics usage, e.g., post-mortem
analytics are not useful for traffic management.

Contribution #2:We introduce FENXI architecture, together
with a thorough analysis of the potential bottlenecks, expos-
ing pitfalls that should be avoided in the design.
• We present in Section 4 the architecture of the Flow man-
ager, which is responsible for extracting features from the
flows of packets without interfering with the traffic for-
warding. We corroborate the design choices with a set of
micro-benchmark to illustrate the performance of each
individual building block.
• We present in Section 5.1 a dynamic batching system,
which addresses the threefold requirements of sustaining
throughput, maintaining low delay, and reducing energy
usage. The concept of grouping multiple data in batches is
fundamental in inference serving systems but introduces
latency. Some researchers have regarded batching as a not
viable solution for latency-sensitive applications [24, 36].
We study this supposed mismatch and improve over state-
of-the-art solutions [23] by introducing a mechanism to
reduce processing and energy usage waste.
• We introduce in Section 5.2 a dedicated caching system,
which we specifically designed for analytics of network
flows. Previous papers have shown that caching for packet
inference suffers from header entropy [40]: we address
this problem by designing approximate caching policies
that suit packet series in flows and evaluate them through
a set of micro-benchmarks.
• We finally evaluate in Section 6 the performance of the
whole FENXI system under scenarios that are the most
challenging with respect to our objective of implementing
analytics in the data path.

2 CONTEXT AND REQUIREMENTS
We describe in this section the parameters and constraints
that interplay in the design of traffic analytics pipelines.
Whereas the main principles of FENXI broadly apply to mul-
tiple DL analytics models and network scenarios, we further
introduce a specific case study with the aim of clarifying the
challenges and providing tangible numerical objectives. We
first describe the regarded case study, and then, we empha-
size the main operational points of the system.

2.1 Case Study
Instead of an in-breadth analysis of multiple use-cases, we
opt for an in-depth analysis of one use-case. We focus on
application identification as a classic example of flow-level
traffic analytics. The identification of the specific applica-
tion related to a flow is a strategic network management
operation. For this task, the inference is triggered after hav-
ing observed a sufficient (but small) number of packets for
each flow [13, 17]. Traffic classification has received growing
attention from researchers in the DL community [10]. We
chose traffic classification among other analytics due to its
challenging requirements: (i) all packets need to be processed
and recomposed into flows; (ii) the first packets of each flow
is used for classification; (iii) the classification need to be
as fast as possible (i.e., the identified label is useless if de-
termined after the flow is completed). In comparison, other
traffic analytics have less stringent requirements.
We operate traffic classification via a 1D-Convolutional

Neural Network (CNN)model, which size (about 100 kweights)
is smaller than typical 2D CNN models used for image pro-
cessing, but is significantly larger than the toy-case models
used in the related systemwork [39, 40]. The model is equiva-
lent to the one used in [12] trained with over 200 applications
labels, which is about ten (four) times the typical (maximum)
number of classes considered in the literature [10].

Flow classification requires the extraction of IP packets for
the analysis of network flows, as identified by the 5-tuple at
the network layer (IP addresses and ports of both source and
destination plus protocol). For this specific analytics, FENXI
triggers, at the K th packet of each flow, the DL inference
based on the size of packets. For other analytics, FENXI
is capable of using other flow information and triggers. By
default in this paper, we useK equal to 10, which corresponds
to a trade-off between the amount of information to analyze
and the delay to process the analytics [10]. Formally we
extract from each flow a series S containing K information,
which are extracted from the K first packets s1, . . . , sK of
the flow. We denote by SK the set of series of size K . In
the case of traffic classification, the information si extracted
from the ith packet of a flow consists in packet length and



FENXI: Deep-learning Traffic Analytics at the edge SEC ’21, December 14–17, 2021, San Jose, California, US

8 16 32 64 128 256 512 1,0
24
2,0
48
4,0
96
8,1
92
16,
384

10

100

1,000

Batch size

A
na
ly
tic

sR
at
e
[k
cl
as
s/
s]

GPU TPU-1 TPU-4 CPU-1 CPU-52

(a) Classification rate vs. batch size.
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Figure 1: Throughput requirements, boxplots show 99th, 75th, 25th, and 1st percentiles.

direction. Other analytics may require information such as
Inter-Arrival Time (IAT) [10] or transport-level flags.
We benchmark the performance of the DL model on the

hardware accelerators. We ran preliminary experiments on
servers equipped with Intel Xeon Platinum 8164 CPUs @
2.00GHz (L1/L2/L3 caches 32 data+32 instruction/1024/36608
kB) and 100 Gbps Mellanox MCX515A-CCAT ConnectX-5.
As DL hardware accelerator, we used either a Huawei Atlas
300I:3010 TPU inference card (equipped with 4× Ascend 310
chips) or an Nvidia V100 GPU. To provide a fair comparison
between TPU and GPU, we did not port the model to the
native Huawei Mind Studio stack; we rather cross-compiled
the original TensorFlow model for the Huawei Atlas engine.
FENXI targets network devices that operate at the edge

of the Internet and contribute to network management op-
erations. To analyze the requirements of such devices, we
studied two representative datasets: (i) a gateway that con-
nects a Campus network to the Wide Area Network (WAN)
Internet, this device is representative of enterprise private
networks; and (ii) a Point-of-Presence (POP) router that con-
nects a residential Access network to the Internet. Since both
datasets are private, for the sake of transparency, we also
used a third dataset (called transit), which comes from the
public MAWI project.1 For each dataset, we extracted rele-
vant traffic characteristics by identifying all flows by means
of the classic IP 5-tuple, from which we extracted packet
time-stamps and lengths that are reported in Table 1 which
is used to motivate system requirements.

2.2 Throughput
The capacity of a network device to sustain a given through-
put is an essential feature, not only from the traditional

1http://mawi.wide.ad.jp/ – extracted 2020-02-12, 2020-03-04, 2020-03-25,
2020-04-08, 2020-05-27, 2020-06-03, 2020-06-10

Traffic characteristics Rate at 100 Gbps

dataset vol. #pkts #flows #series packet flow series
[GB] [M] [k] [k] [Mpps] [kflows/s] [kclass/s]

access 765 858 3963 2481 14.0 64.7 40.5
transit 870 923 2476 1968 13.2 35.5 28.3
campus 483 516 2700 1718 13.3 69.8 44.4

average 706 765 3046 2055 13.4 56.6 37.3

Table 1: Traffic characteristics in real datasets.

perspective of data rate (measured in bit per second) but also
from the perspective of flow analytics (measured in classifi-
cation per second). FENXI design should aim to not sacrifice
the former to perform the latter. We also have to consider the
foreseen growth of both data rates (due to higher throughput
in local networks) and flow analytics (due to the increase of
connected devices). While today’s edge routers typically deal
with throughput in the order of single-digit Gigabits per sec-
ond (Gbps), the requirements for the next-generation routers
consider up to 100Gbps. In the following, to put FENXI under
stress, we will use this configuration for 100Gbps network
routers as a reference.

We show in Table 1 the total number of packets, flows and
series (i.e., flows with more than ten packets) in our datasets.
We use these traffic characteristics to derive the required per-
formance in terms of packet (i.e., Mpps) and series processing
speed (i.e., class./s) for the reference 100Gbps at maximum
load. We conclude that FENXI deployed in a single 100Gbps
linecard should be able to sustain 15Mpps and 50 kclass/s.
We then evaluate whether the hardware accelerator can

sustain such an analytics rate. We report analytics through-
put in Figure 1a in terms of classification per second achieved
by CPU (both 1 and 52 cores), GPU (640 cores available), and
TPU (both 1 and 4 cores). The main parameter that impacts
the analytics rate is the batch size, i.e., the number of series
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Figure 2: Delay requirements. Boxplots show 99th, 75th, 25th, and 1st percentiles.

that are grouped for parallel processing. To evaluate this
aspect, we performed a 60 s long stress test by submitting a
stream of inference tasks of a given batch size, while mea-
suring the time between each submission and the related
output delivery. We show in Figure 1a that, with a batch size
greater than 64, every hardware accelerator can sustain a
target 50 kclass/s. Interestingly, whereas CPU and GPU are
optimized for large batch size, the 4 TPU chips combined are
significantly faster in processing small batches than both 52
CPUs and GPU.
The stress test however does not correctly represent real

traffic behavior. Network traffic is subject to instantaneous
high-load over a short period, i.e., bursts [23], and this can be
a challenge regarding the overall system throughput. To esti-
mate whether incoming data bursts also reflect in the series
arrival rate, we measured during 10min of each dataset the
batch completion delay, which is the time needed to complete
a batch of a given size. Thus, for a batch B = 8 it is the time
needed for 8 consecutive new series to enter in the system.
We computed the ratio between the longest and the shortest
completion delays observed within each second. A high ratio
indicates that the batch completion delays are subject to a
high variation. Results in Figure 1b show that batch comple-
tion delays vary significantly, especially with small batches.
Hence, we highlight that the results in Figure 1a on the max-
imum classification rate for a given configuration addresses
one aspect of the analytics rate while FENXI should also
be able to absorb bursts, by dynamically adapting the batch
sizes to sudden series arrivals.

Finally, we analyze the throughput with respect to energy
consumption, which is a key performance criterion in today’s
edge devices. Figure 1c illustrates the tradeoff of analytics
throughput versus power usage for varying batch sizes as
a scatter plot of the power (x-axis) and classification rate
(y-axis) normalized with respect to reference values of 30W
that is the power consumption of an idle GPU and 50 kclass/s.

The top-left square highlights desirable configurations; the
bottom-right square includes operational regions that should
be avoided. Notice that only when using a single TPU we
meet our requirements (30W and 50 kclass/s) when using a
couple of configurations, while all other scenarios fail in at
least one dimension.

2.3 Delay
The second essential feature of a traffic analytics pipeline
is the delay between the time at which the analytics can be
processed (in our case study, it is the time at which the K th

packet arrives at the device) and the time at which the result
of the analytics can be exploited.
More in details, we split delay into two components: the

analytics processing delay and the batch completion delay. We
report in Figure 2a the analytics processing delay for mul-
tiple batch sizes. We emphasize here the trade-off between
throughput and delay since the results from Figure 1a call
for the use of a larger batch, but the processing of a large
batch generates a significant delay. Furthermore, we added in
Figure 2a a line to represent the batch completion delay for a
50 kclass/s constant series arrival rate. The batch completion
delay is dominant in comparison to the analytics processing
delay. We conclude that setting the batch size is key: a large
batch results in a long delay, while a small one leads the
inference system to run in a sub-optimal operational regime.
We highlight now the impact of delay in flow analytics

when regarded from the application of the classification re-
sult. We distinguish flows in short-lived and long-lived. The
former represents the vast majority of the flows while the
latter is responsible for the vast majority of data volume. In
our datasets, considering the target of analytics after the 10th
packet we identify a flow as short-lived if it has less than
35 packets, long-lived otherwise. FENXI targets to identify
the application label for a short-lived flow before observing
the flow last packet to avoid post-mortem analytics. Indeed,
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Figure 3: Modular view of the FENXI system.

such a label is meant to tag flow’s packets before forwarding
them. However, the life expectancy of short-lived flows after
the 10th packet arrival ranges from a few milliseconds to
minutes (see Figure 2b). Long-lived flows on the contrary
are likely classified before their end, but FENXI targets early
classification to enable effective traffic differentiation [26],
so the sooner the classification, the better.

Figure 2c presents the number of packets received by long-
lived flows since the 10th packet. Waiting for the label drives
the system to an increasing number of untagged packets
hence deteriorating the performance of the algorithm exploit-
ing such information. We conclude that delay requirement
cannot be strictly and universally set, since it also depends on
the location of the device in the network (see the differences
between datasets). Yet, from our analysis, a target around
10ms enables a low fraction of both untagged packets and
post-mortem analytics.

2.4 Takeaway
We showed in this section that the design of FENXI should
take into account multiple, sometimes conflicting, objectives
related to throughput, delay, and energy consumption.

We are positive in the capabilities of hardware accelerators
to handle the classification rates for regular edge routers,
even at 100Gbps, but we noticed that tailored policies re-
garding batch size have to be designed to deal with bursts.
Whereas it can meet the throughput requirements, the CPU
does not offer a viable hardware platform for fast analytics
since the energy consumption is too large while it does not
offer processing gains. TPU offers a more energy-efficient
alternative, especially with regards to its higher processing
performance for small batches, while GPU is the option to
adopt for large throughput requirements.
The study of IAT in flows revealed that we cannot ex-

press any unique delay objective, contrarily to previous work
on inference service for image processing applications [16].
We recommend small batch sizes to meet a delay objective
around 10ms, but we also showed that small batch sizes can-
not sustain high throughput nor low power consumption.

These three objectives (throughput, delay, and energy) define
the operational points of the FENXI system.

3 FENXI OVERVIEW
This section introduces FENXI design, which is presented
in Figure 3. The FENXI architecture splits the processing
between Flow managers and Analytics managers, and each
manager can be deployed on dedicated independent pro-
cessing units. This design choice is driven by the fact that
the two managers operate at different granularities. Flow
managers handle packet entering the system, group them
according to the related flow, and extract features related to
the first K packets of each flow; Analytics managers receive
per-flow features from Flow managers, further group them
into batches, and trigger DL inference on a batch.
A Flow and an Analytics manager together constitute a

single processing pipeline and communicate through a com-
munication ring cRing, which enables zero-copy and lock-
less data exchange. In the following, we introduce FENXI
building blocks that we will detail in the rest of the paper.

Flow Manager. The flow manager is FENXI interface to-
wards the system NICs. Received packets are processed ac-
cording to the steps pictured on the left side of Figure 3.
FENXI identifies the flow through the IP 5-tuple. If the flow
has been already classified in the past, it forwards the packet
with a tag indicating the classification result. If the flow
has not been classified yet, FENXI updates its internal data
structures and forwards the packet with an empty tag. Fur-
thermore, if the received packet completes a series i.e., this
packet is the K th packet of this flow, FENXI forwards the
extracted features and the flow tuple to the next element in
the pipeline (the analytics manager) via the cRing.

To fulfill device requirements (cf. Section 2), the flow man-
ager must reduce per-packet processing overhead, such that
any function carefully considers hardware and software ca-
pabilities. As stated in Section 7, previous work on offloaded
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inferring services have either not addressed line rate pre-
processing (for example in the literature on image process-
ing [25, 47]) or considered less demanding offloading tasks
(for example load-balancing [23]). Feature extraction at line
rate is critical for in-device analytics implementation. We
describe the feature extraction process in Section 4.

AnalyticsManager. TheAnalyticsmanager constantly polls
the cRing, waiting for flow tuple and series to be pulled. To
increase efficiency, the software operations of the Analytics
manager are tightly coupled to the underlying DL hardware
accelerator. To fulfill constraints and requirements expressed
in Section 2, we further split the Analytics manager into two
sub-modules Batching and Caching with the twofold objec-
tive of improving data transmission and analytics processing
speed. Batching is responsible for building groups of series
for which analytics will be computed in parallel. Caching
acts as a filter before batch composition and stores recently
executed analytics to speed up processing.

Each series is processed by the Analytics manager accord-
ing to the steps pictured on the right side of Figure 3. If the
series is cached, the result is immediately returned to the
Flow manager. Otherwise, a batch of series is formed and,
when ready, sent to the Analytics device for processing. In
turn, when the result of the batch is ready, the analytics
manager forwards the labels back to the Flow manager.

Pipeline deployment strategies. We showed in Section 2
that different networks present different packets, flows, and
series rates. Hence, the two pipeline stages can be more or
less latency and computational processing-demanding, and
bottlenecks do not necessarily happen at the same stage of
the pipeline. As such, we design FENXI to have a configurable
multi-pipeline system. To reduce system overhead, we only
consider lock-free strategies for which the same flow/series
information is always handled by the same couple of Flow
and Analytics managers, which run on separate processing
units.

Thanks to its flexible design FENXI pipeline can be con-
figured to address the processing bottleneck by means of de-
ployment strategies. Figure 4 presents three lock-free multi-
pipeline deployment strategies. (i) A pipeline in a 1:1:1 con-
figuration is the default configuration with a Flow manager,
an Analytics manager, and an analytics processor i.e., the
TPU that runs in isolation. (ii) The 1:1:2 configuration ad-
dresses a bottleneck in the analytics processing throughput.
In this configuration, a single Analytics manager balances
the analytics load across more than one TPU chips. (iii) The
2:1:1 configuration copes with scenarios with high packet
arrival rates but mid/low series arrival rates. In such a case a
single Analytics manager interacting with a single TPU can
retrieve series from multiple Flow managers.
Finally, for each strategy, FENXI can scale up by instan-

tiating multiple pipelines in parallel by exploiting modern
NICs dynamic forwarding of incoming traffic into different
receive queues by using Receive Side Scaling (RSS) to load
balance packets acquisition across different Flow manages.
According to our analysis in Section 2, a single TPU can

sustain the load for 100Gbps. Nonetheless, we deploy a sys-
tem with the multi-pipeline 1:1:1 configuration, which main-
tains a lower load on the hardware accelerator and can absorb
instantaneous high series arrival rate over short periods.

4 FLOWMANAGER
The Flow manager module aims to extract the features that
are relevant for the analytics. A high-level diagram of its
operations is presented in Figure 3. Packets are split into
flows according to the classic IP 5-tuple and then processed
depending on three cases. (i) The packet is part of a labeled
flow, i.e., FENXI previously ran analytics on this flow, which
resulted in a label. In this case, the forwarding plane performs
actions on the packet with respect to the label, e.g., tagging
the packet before forwarding it. It is important to highlight
that when the packet is part of an unlabeled flow, rather
than waiting for the label to be computed, FENXI forwards
the packet unmodified. We say that the packet is untagged.
In the latter scenario, we further distinguish two cases: (ii)
if the packet is not the K th packet of the flow, FENXI only
updates the flow state; (iii) If the packet is the K th packet of
the flow, the analytics processing for this flow can be trig-
gered. FENXI forwards the features extracted from the first
K packets (e.g., a series of packet properties), and passes it to
the next pipeline element, which asynchronously retrieves
it via the cRing.

4.1 System Design
The Flow manager data plane is designed around Data Plane
Development Kit (DPDK) but, in principle, it can be ported to
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similar packet processing frameworks for general-purpose
servers [35] or smart NICs [1, 6].
At startup time, the Flow manager instantiates several

workers, one for each pipeline, which independently han-
dles ongoing flows dispatched by the linecard with RSS. To
keep track of ongoing flows, FENXI uses a hash table (see
Figure 5) with multiple entries buckets (i.e., 8) coupled with a
data array, which is addressed using array indexes retrieved
through a dedicated ring buffer. The data array size (i.e., the
maximum number of entries that can be stored by the flow
manager) and the number of buckets can differ and hence
used to artificially control the number of collisions within a
single bucket at the expense of memory efficiency.
When a packet arrives, the hash table bucket position is

computed using the three least significant bytes of a hash
value computed on the IP 5-tuple. To reduce as much as
possible the packet processing time the Flow manager relies
on the fact that modern linecards and NICs compute sym-
metric hash values [44] (i.e., the same hash is computed for
both directions of a flow) on the IP 5-tuple to load balance
the flows across the different receive queues i.e., RSS, and
attach such value to packet’s metadata. To mitigate the un-
balance issues reported by Woo and Park [44] when using
the Toeplitz symmetric hash function we compute our hash
as:

f (hashr ss , IPtuple ) = hashr ss ⊕ IPsrc ⊕ IPdst
where ⊕ represents the bitwise XOR operation, which pro-
vides a balanced hash function at a very low processing cost.

The hash table bucket is stored into a single cache line
(i.e., 64 Bytes) and composed by a bitmap used to quickly
check the occupied entries in the bucket, eight flow entries,
and a next value, which points to an external, dynamically
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allocated, memory area to handle chaining. Each flow entry
stores a 1 Byte tag extracted from the hash value, a 2 Bytes
timestamp, and a 4 Bytes index. We use the hash tag, which
corresponds to the first byte of the hash value itself, for a
quick comparison to accelerate lookups in case of a high
number of collisions [14]. The coarse grain timestamp (in
seconds) stores the last time the flow entry was accessed (e.g.,
for packet labeling or statistics update) to lazily remove inac-
tive flow entries based on the stale timeout system parameter.
Finally, we use the index to point to the element of the data
array that stores the information of the flow. A separate ring
buffer is used to keep track of data array indexes, which are
available for storing flow information.

The data array stores (i) the flow’s key (i.e., the IP 5-tuple
used during the lookup), (ii) the result from the analytics (i.e.,
the label stored as an atomic variable to avoid contention),
(iii) the features extracted from the flow (i.e., packet size
and direction of the first K packets), and (iv) some statistics
about the flow (e.g., the number of packets).

4.2 Micro-benchmark
We ran two micro-benchmarks to better understand FENXI
Flow manager performance in isolation (without the Analyt-
ics manager), and in worst-case conditions, 64 Bytes packets,
using two servers with DPDK 20.02 (see the technical de-
scription in Section 2), which are directly connected via a
100Gbps link.

In the first test, we evaluated the processing speed of the
Flow manager with a single worker for increasing DPDK
batch size i.e., the maximum number of packets the sys-
tem will receive in parallel. The data array size is fixed
to 219 (524 k) with 217 (131 k) buckets. At startup, we pre-
loaded the hash table to reach a fixed load factor (load =
elements/size(data_array)). During a 30 s time frame, we
sent 64 Bytes packets belonging to the pre-loaded flows at
maximum speed to the Flowmanager from the second server
running Moongen [20]. Figure 6 shows the maximum num-
ber of packets retrieved in parallel by the DPDK framework
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for different hash table loads (at load 0, a single flow is used
during the test). The no operation reference corresponds to
Flow manager workers that receive and forward packets
without performing any additional operation. Large batch
sizes improve the packet processing efficiency, leading to a
higher speed, especially for lower loads, which are not far
from the limit highlighted by the no operation reference line.
Moreover, higher hash table loads lead to slower processing
speed, which highlights the fact that a hash table set with a
wrong dimension can become a bottleneck.

In the second test, we evaluated the processing speed with
an increasing number of Flow manager workers (one per
core) and a different number of flows.We pre-loaded the hash
table such that it reached a 0.5 load factor and sent 64 Bytes
packets belonging to such flows. We present in Figure 7
the processing speed for a bucket size that corresponds to
a quarter of the size of the hash table. The more workers
are used by the flow manager, the higher is the processing
speed. Moreover, processing speed is limited at 80Mpps due
to hardware limitations (the theoretical limit is 144.88Mpps)
imposed by the PCI Express 3.0 x16, which our 100Gbps NIC
is attached to. Similar limitations are reported by Neugebauer
et al. [31]. We also observe that the processing speed does
not only depend on the hash table load factor but also on the
number of concurrent flows. Hence, the hash table timeout
for removing old elements needs to be correctly set to avoid
too many stale flows, e.g., 30 s.

From our micro-benchmarks and the preliminary system
requirements analysis in Section 2 we conclude that to sus-
tain 100Gbps (about 13Mpps in the considered datasets)
two-three cores suffice with a properly sized flow table.

5 ANALYTICS MANAGER
The analytics manager module takes as input a tuple (IP
5-tuple, packet time series) generated by a Flow manager
and perform the desired analytics i.e., early flow classifica-
tion. Similarly to the flow manager, at startup, the analytics

Algorithm 1: Timeout based dynamic batching
At timeout T expiration
begin

r ← length of cRing;
B ← min {b ∈ B : b ≥ r };
batch[0..r ]← cRing[0..r ];
padding← B − r ;
if padding then

batch[r ..B]← pad[0..padding];
end
Process(batch);

end

manager instantiates several workers, one per pipeline ac-
cording to the multi-pipeline strategy. Each worker retrieves
series ready to be analyzed by constantly polling the dedi-
cated cRing (cf. Figure 4). The analytics manager leverages
two key components, namely (i) Dynamic Batching and (ii)
Approximate Caching. In the remainder of this section, we
further detail the design and internal architecture of batching
and caching processing.

5.1 Batching
Partitioning time series into batches has two main advan-
tages: (i) it reduces the communication overhead by amortiz-
ing transmission overhead, and (ii) it enables a faster com-
putation through parallel processing and memory access.
According to our preliminary benchmark in Section 2, the
bigger the batch, the shorter the per-series processing delay
i.e., the time needed for sending, processing, and receiving
the analytics results of a single series. Hence, if we only take
into account processing throughput, the bigger the batch,
the better.

However, big batches take longer to be filled, which can be
a problem at low series arrival rates. Thus, system designers
have to tradeoff analytics throughput and operational delay
with respect to the series arrival rate and the application
requirement. Overall, adopting a static batch size leads to
systemsworkingwell only on a single operational point. Con-
versely, we implement in FENXI a dynamic batching strategy
with variable batch size to tradeoff analytics throughput, de-
lay, and processing power.
The concept of dynamic batch consists in running the

DL model with variable batch size [16]. Due to the limited
amount of available resources in DL accelerators, a DL model
cannot be used with any batch size; it is defined with one
unique batch size B. Dynamic batching is then implemented
by hosting multiple models, each one with a different batch
size as in [5, 8]. A naive approach to dynamic batching is
presented in Algorithm 1. Let B be the set of batch sizes of
the implemented DL models. When the system schedules
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models inference (e.g., using a timeout), r series are waiting
in the cRing. The Analytics manager creates a new batch
from these r series by selecting the model with batch size B
such that B is the smallest batch size greater than r in B. If
the batch is not complete, the system may add B − r padding
series before sending it to the hardware accelerator.

To better understand the behavior of such an algorithm in
realistic network conditions, we simulated system behaviors
by extracting single-chip TPU’s performance profile reported
in Section 2 for batch sizes equal to 2x with x ∈ [3..10]. The
simulation input is then generated by a Poisson process that
inputs a flow randomly chosen from flows extracted from
the campus, home, and transit datasets at a given average
series arrival rate λ. Figure 8 presents the total hardware
accelerator usage in the simulated scenario, which is further
split in padding and series with different timeout values i.e.,
left, no timeout, and center fixed timeout. Notice that we
here consider timeouts that are in the order of magnitude of
(i) the RTT to get analytics as soon as possible and (ii) the
analytics processing delay reported in Section 2.
When no timeout applies, the system sends a new batch

immediately when the accelerator is ready. In this case, the
processing usage is close to 1 even when the series arrival
rate is low. This strategy is inefficient in two aspects: (i) at
low arrival rates, the number of series r is low, so the system
should add a large number of padding, which is a waste of
resources; (ii) since the number of series r is low, the size
of the batch B is also low, which is less efficient in terms of
processing throughput. The timeout addresses the problem
of over-utilization of the accelerator since the hardware is
used only a fraction of time at low series arrival rates. We
observe however that a large amount of computational power
is spent on processing padding, regardless of the timeout.
To prevent the accelerator to uselessly process padding,

we design a custom dynamic batching system. FENXI adopts
both concepts of dynamic batching and timeout T because
they provide an efficient basis for trade-off throughput and

Algorithm 2: Carry-over dynamic batching
At timeout T expiration
begin

r ← length of cRing;
B ← min {b ∈ B : b ≥ r };
padding← B − r ;
if padding

B > Φ then
B ← max {b ∈ B : b ≤ r };
batch[0..B]← cRing[0..B];

else
batch[0..r ]← cRing[0..r ];
if padding then

batch[r ..B]← pad[0..padding ];
end

end
Process(batch);

end

application delay. Note that since the cRing is pulled in pool
mode a real timeout does not exist, we nonetheless present
the batching strategy with a real timeout for ease of presen-
tation. We augment the timeout batching strategy with a
Carry-over system to control the padding as illustrated in
Algorithm 2. Let Φ be a threshold in [0, 0.5] that sets the
maximum fraction of padding accepted in the batch. When
the timeout is reached, the system contains r series. Let B
be the smallest batch size in B greater than r . If the padding
necessary to complete the batch is greater than Φ, the system
scales back to a smaller batch size B′, which is the largest
batch size in B smaller than r . This way, we do not include
in the batch the latest series that arrived in the series ring.
These series wait for the next batch that will be processed.

In essence, the Carry-over policy (i) adds some extra delay
for a subset of series, but these series have just arrived in
the system so the extra delay compared to the timeout is
small; and (ii) enables control of the fraction of padding
in the system. The rightmost part of Figure 8 presents the
results in the simulated scenario for the Carry-over policy
with Φ = 0.2 and timeout = 10ms demonstrating that it is
able to control both padding and processing efficiency with
respect to no timeout and fixed timeout batching policies.
We further analyze the performance of our batching strategy
in Section 6 using the FENXI prototype.

5.2 Caching
A trained DL model is deterministic. In the case of traffic
classification it can be abstracted as a non-linear function f (·)
that maps a series S ∈ SK , i.e., with features extracted from
the first K packets, to a class, i.e., label l ∈ L. The label set L
depends on the analytics. In the traffic classification example,
we can classify 200 different applications. The function f is
not injective: multiple series can have the same label l ∈ L.
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Algorithm 3: Prefix cache
At timeout T expiration
begin

for z ← 0 to len(cRing) do
SK ← cRing [z];
Sδ ← s1≤i≤δ ∈ SK ;
if lSK ← Cache.lookup(Sδ ) then

pull(cRing[z]);
end

end
batchComposition();

end
At analytics result reception
begin

for z ← 0 to B do
SK ← batch[z];
Sδ ← s1≤i≤δ ∈ SK ;
Cache.insert(Sδ );

end
end

Based on this observation and on the fact that multiple flows
have the same series (see Table 1), we foresee the benefits
of implementing a cache, which stores popular analytics
computation, to both speed up analytics and reduce the load
on the hardware accelerator.

In our context, the caching system C storesC entries in the
form of keys and values, where the key is a series SK ∈ SK
and the value is an associated label lSK . An incoming flow
for which the extracted series SK is cached in C is directly
classified with the stored label. The performance of such
cache, in terms of hit ratio increases when (i) the number of
different flows having the same series is large and (ii) the
distribution of flows per series (popularity) is skewed.

To increase the hit-ratio of the cache, a cache designer can
implement approximate caching (a.k.a. similarity caching) [21,
30, 33] by (i) reducing the set of keys P in the cache and
(ii) applying an approximate function that maps the set of
input series SK to a smaller set of keys P ′. Without loss of
generality, we focus in the context of our use case on pre-
fix caching, where any cached key is a subset of the series
SK , i.e., the key set P ′ is the subset Sδ where δ < K . For-
mally, we define a function qδ (·) that transforms a series in
SK ∈ SK to a series Sδ ∈ Sδ where, for any 1 ≤ i ≤ δ , and
for any series’ feature s ′ ∈ SK with s ′ = qδ (s) ∈ Sδ , s ′i = si .
Notice that other time-series based analytics (e.g., forecast
of load or other signals) would equally benefit from policies
with very similar implementation (e.g., postfix caching, to
give more importance to most recent samples), so while the
quantitative evaluation is limited to the traffic classification
use-case, the qualitative lessons holds to a larger extent.
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Figure 9: Prefix cache hit-ratio for prefixes δ = 4 and
δ = 6, in comparison to regular cache with 10 packets.

FENXI implements the prefix cache as a Least Recently
Used (LRU) cache that act as filter before the batch compo-
sition described in Algorithm 2. Note that in the real imple-
mentation caching and batching modules are entangled, but
we present them separately for the sake of clarity. The pro-
cess at timeout expiration and at analytics result reception is
described in Algorithm 3. When the timeout expires, before
the batch composition and for each series in the cRing, the
approximation function qδ (·) is applied to series SK to obtain
the prefix series Sδ for which a cache lookup is performed. In
case Sδ has a matching label l , i.e., Hit, FENXI tags the series
SK with the label l and pulls the element from the cRing since
the analytics is considered as already executed. Notice that,
according to the cache replacement policy, Cache.lookup also
adjusts internal cache data structures e.g., updates the list
of least recently used elements for LRU. In case Sδ does not
have a matching label l , i.e., Miss, the processing continues.
Finally, a batch is composed using Algorithm 2. At analytics
results reception, FENXI inserts the label l in the cache for
the corresponding prefix series Sδ derived from SK .

For a given hit-ratio target, the prefix cache is smaller than
the regular cache. It is however an approximate cache in the
sense that it is not guaranteed that the series SK and Sδ have
the same analytics result. In case of a hit, two cases can be
distinguished: either (i) the prefix hit does not introduce any
additional error, since the label that the DL model would
predict lSK is the same as the one that is stored in the cache
for the prefix series lSδ (that we denote as Good); or, (ii) the
approximate hit introduces an additional error (that sums up
to the DL model error) as the label that the DL model would
predict lSK is not the same as the one that is stored in the
cache for the prefix series lSδ (that we denote as Error).
To evaluate the performance of the caching system in

realistic network scenarios we simulated a workload by using
a dataset containing 8946 k flows extracted from both campus
and access ones for which we have corresponding labels
i.e., the ground truth used to train the DL model. Figure 9
presents the hit ratio for different caching strategies where
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Figure 11: Caching impact (Φ = 0.2, timeout = 10ms).
Boxplots show 99th, 75th, 25th, and 1st percentiles; bar-
charts report median and 99th percentile.

regular cache means that the key used for the cache is SK
with K = 10 and prefix 4 and 6 means that the key used for
caching analytics results is Sδ with δ = 4 and 6 respectively.
The gain brought by the short prefix δ = 4 with respect to
regular cache is significant with an increase of hit-ratio by
3× although it starts affecting classification accuracy. More
conservative settings such as δ = 6 allows a reduction of
the DL workload by approximately 30 %, limiting the error
rate to less than 1 %. We further analyze the performance of
caching in Section 6.

6 SYSTEM EVALUATION
Scenario. We evaluated the overall performance of FENXI

as a flow classifier that receives packets in the input port and
outputs them in the opposite direction with a tag indicating
the class (we use the IP field Type of Service) when the analyt-
ics is available. Our evaluation ran on two directly connected
servers. The characteristics (cf. Section 2) are: each server is
equipped with Intel Xeon Platinum 8164 CPUs @ 2.00GHz
(L1/L2/L3 caches 32 data+32 instruction)/1024/36608 kB), a
100GbpsMellanox MCX515A-CCAT ConnectX-5 NIC and
a Huawei Atlas 300I:3010 Inference Card. In the test, one
server ran MoonGen [20] while the other one ran FENXI

with data array size and buckets equal to 222 (4M), and stale
timeout 30 s. Note that although servers running FENXI are
a high-end server we only use a limited amount of resources
e.g., 2/4 cores, 1/2 TPU chips, and a few MB of DRAM that
can be found (or installed) at the network access. The work-
load is two-minute-long traces replayed by MoonGen. Since
the throughput of our original traces is too low, we generated
realistic traces as follows: the flow arrival process follows a
Poisson process with average λ, while the packets conform
to the real flow characteristics (i.e., inter-packet delay, size,
and the number of packets per flow) randomly chosen from
a catalog of 1M flows extracted from the Access dataset.

Dynamic batching. We started our evaluation by a scenario
in which a single 1:1:1 FENXI pipeline (i.e., a flow manager,
an ascend manager, and a TPU) was given 50 kflows/s. Fig-
ure 10 compare timeout and Carry-over batching policies in
terms of, from left to right, time to perform the analytics since
10th packet , padding ratio, and ratio of flows that did not get
analytics before their end i.e., post-mortem. The lower the
timeout, the smaller the time to get the label. However, we
point out that a smaller timeout drives the system to an inef-
ficient operational point, especially for low arrival rate. On
the contrary, a higher timeout leads to a higher percentage of
post-mortem analytics. Finally, as pointed out in Section 5.1,
the Carry-over batching policy helps to control the level of
padding trading off additional delay for the time to get the
label in some cases i.e., 99th and 75th percentiles. The lower
the Φ, the lower the padding and waste of processing and
the higher the additional delay.

Approximate caching. In the same scenario we also evalu-
ated the impact of the caching module in FENXI configured
with timeout 10ms and Φ = 0.2 in case of Carry-over. For
this scenario, we dimensioned the approximate LRU cache
with δ = 6 to have a hit ratio of 0.3 and we do not report
here the difference between regular and approximate pre-
fix cache as they would achieve similar results but with the
advantage of a smaller memory footprint for the latter, at
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Figure 12: Fixed and Carry-over batching strategies
over time under dynamic traffic conditions.

the price of a higher error. Figure 11 reports the results we
obtained with timeout and Carry-over batching policies with
or without caching in terms of time to get the label, padding,
and post-mortem analytics. The results show that, for both
batching strategies, the time to get the label decreases as
some of the series i.e., the one for which analytics is cached,
are retrieved much faster. Notice also that, for the same rea-
son the variability of the delay increases as well. At the same
time, given the fact that the delay to get the label decreases,
also the post-mortem analytics ratio decreases.

Flash crowd. Finally we evaluated FENXI performance in
a dynamic flash-crowd scenario in which two 1:1:1 pipelines
are subject to an input traffic at 10 kflows/s for the first
120 seconds, then 70 kflows/s in the next 120 seconds, and
10 kflows/s for the last part of the experiment. FENXI was
configured with a prefix δ = 6 LRU cache and size for which
the hit ratio is approximately 0.3. The Carry-over strategy is
set with 10ms timeout and Φ = 0.2. Figure 12 presents the
time to get the label, the ratio of TPU usage, and the average
batch size over time. Both timeout and Carry-over batching
strategies are able to scale up batch size and consequently the
processing usage when the traffic load suddenly increases.
Notice that, despite the higher processing, the time to get the
label only slightly increases. Finally, we highlight the fact
that Carry-over is successful in dynamically adapting to the

right batch size, reduces energy consumption by lower pro-
cessing power, and further avoid wasting processing power
by greatly limiting the processing power spent for padded
input analysis.

7 RELATEDWORK
The success of DL technology has ignited interest for its in-
network use, so that valuable work started tackling the issue
of DL analytics offloading from a networking perspective.
Server-side offloading: The Machine Learning (ML) com-

munity has extensively studied the performance of hardware
accelerators [18, 34] and the design of offloadingmechanisms
for data inference to external hardware. However, the exist-
ing inference serving systems [2] and literature [16, 25, 43, 47]
generally target the case of offloading image recognition to
GPU-equipped servers in a datacenter. The closest work
in this space is Clipper [16], whose design also leverages
caching and batching, as rather typical weapons in the de-
sign space. This solution and subsequent work [43] target
cloud-based inference with desirable latency targets (around
20ms). Recent work [42] also studies the cooperation among
edge and cloud in the context of video streaming analytics.
However, as pointed out in [45], the volume of data and pro-
cessing time for DL inference models on network traffic is
radically different from that of computer vision applications,
so that the system requirement, the processed inputs, and
the usage of the analytics output are radically different as
well.

Network-wide offloading: Complementary to our work,
programmable network devices have been used to assist the
processing of heavy workloads [29, 36, 37] some of which
have a specific focus on network-assisted DL offloading [36].
For instance, BananaSplit [36] focuses on breaking down DL
computation of complex image recognition models across
multiple network devices using SmartNIC whereas in our
work we adopt the opposite viewpoint and target in-device
execution of DL models applied to data plane traffic.
In-device machine learning (ML) offloading: Work that fo-

cuses on the programmable data-plane for switches based
on Protocol Independent Switch Architecture (PISA) [22, 36,
38, 45] tries to cope with the limited resources that are avail-
able for the implementation of ML models. For example [45]
adapt several ML models to the match-action table model
in P4, while [15] implementing a random forest model to
classify traffic. In both cases, the benefits of running the ana-
lytics in the data-plane are limited since no immediate packet
forwarding decision derives from the analytics. Moreover,
the lack of computing and memory resources prevents the
implementation of DL models altogether.
In-device deep learning (DL) offloading: Offloading DL in-

ference to hardware accelerators brings better accuracy, the
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ability to run several DL models in parallel, and to leverage
specialized DL frameworks such as TensorFlow [9]. Closest
to our work are thus two recent (not peer-reviewed) papers,
which explore in-device DL offloading. ASIC is used in [40]
for DL inference at packet level but only on toy-models with
3 layers and 21 neurons, i.e., 5000× smaller than the model
we use. Smart NIC is used in [39], that however limits model
size to 50 binary neurons, i.e., 2000× fewer weights, each
with a resolution 32× smaller than in our case study. To at-
tain sub-microsecond latency, [39, 40] restrict themselves
to such tiny models that it becomes questionable if their
execution can have any practical use given the significant
distance of such shallow models from the depth needed to
embrace the expected benefits of DL. Our work takes the
opposite viewpoint and tackles a timely and efficient execu-
tion of relevant DL models for edge intelligence by using the
appropriate offloading hardware, i.e., TPUs.

8 CONCLUSION
FENXI is the first system to integrate forwarding and ad-
vanced analytics capabilities, exploiting TPU hardware ac-
celeration to offer efficient execution of Deep Learning ana-
lytics in network devices’ data path. Its system design lever-
ages asynchronous communication between forwarding and
analytics engines, optimizing the usage of the hardware ac-
celerator by introducing novel dynamic batching and smart
caching policies. This makes FENXI capable of high-speed
(100Gbps), low-delay (below 10ms), and low-power consump-
tion (on the order of few tens ofWatts for the TPU) on off-the-
shelf hardware, ultimately paving the way to the deployment
of embedded intelligence at the network edge.
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