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Location based services are a vital component of the mobile ecosystem. Among all the
location technologies used behind the scenes, A-GPS (Assisted-GPS) is considered to be
the most accurate. Unlike standalone GPS systems, A-GPS uses network support to speed
up position fix. However, it can be a dangerous strategy due to varying cell conditions
which may impair performance, sometimes potentially neglecting the expected benefits of
the original design. We present the characterization of the accuracy, location acquisition
speed, energy cost, and network dependency of the state of the art A-GPS receivers shipped
in popular mobile devices. Our analysis is based on active measurements, an exhaustive
on-device analysis, and cellular traffic traces processing. The results reveals a number of
inefficiencies as a result of the strong dependence on the cellular network to obtain assisting
data, implementation, and integration problems.

I. Introduction

One of the engines for the success of smartphones
has been the breadth of mobile applications, boot-
strapped by a rich set of platform-dependent APIs that
enabled innovation and creativity by third party de-
velopers. Location APIs have played a leading role
among them. For example, beside classic navigation
and map services, mobile apps can suggest points of
interest, locate friends, provide targeted ads and per-
form geo-tagging, i.e. associate location information
to user content such as photos.

Location APIs operate by processing data both
from the embedded sensors and external data fetched
from the network connection to provide coordinates
or human readable information like the street name.
They rely on two technologies: Network Positioning
System (NPS) and Assisted-GPS (A-GPS). In the first
case, the location is retrieved by measuring the signal
level of surrounding transmitters (Wi-Fi access point
or cellular towers) to compute its location by perform-
ing a lookup on a set of remote databases. NPS tech-
nologies have the ability to provide short Time To
First Fix (TTFF, i.e. time necessary to compute a lo-
cation) at a limited energy cost but they are not an
optimal solution for navigation and other apps requir-
ing high accuracy. On the other hand, GPS is the best
technology for accuracy but it can require minutes to
fix the position depending on the signal conditions.

Sensor Accuracy (m) Energy TTFF (s) Indoors Support

Cellular 100-5000 Mid 1-3 X
Wifi 25-200 Mid 1-3 X
GPS 1-50 High 5-120 Near windows
A-GPS 1-100 Very High 2-60 Near windows

Table 1: Comparison of location technologies in mod-
ern mobile devices.

This makes it not compatible with modern mobile
apps where users typically perform just a single loca-
tion fix for check-in (e.g. Foursquare), or geo-tagging
services. Instead, A-GPS combines GPS capabilities
with assisting data provided through the cellular net-
work to help the receiver to speed up synchronization
of the GPS signal and the position fix. Table 1 com-
pares the characteristics of these technologies report-
ing the accuracy error in fixing the position, the TTFF,
the energy consumed and the ability to sense location
indoors.

While indoors localization techniques and the per-
formance of regular GPS chipsets have been well
studied in the literature, little is known on the true
performance of A-GPS and the assisting infrastruc-
ture. To the best of our knowledge, this is the first
study focused on investigating the whole A-GPS sys-
tem in modern smartphones. We carefully analyse
how A-GPS receivers operate and behave on multiple
devices and on the cellular network. We also cover



the assisting infrastructure and how the current design
impacts on the whole system. We use a comprehen-
sive approach that relies on i) active experiments to
identify different A-GPS implementations in modern
smartphones, ii) a set of on-device analysis to assess
the accuracy, speed and energy cost of acquiring a lo-
cation, and iii) a characterization of A-GPS systems
using real cellular traffic traces from more than three
million users. In more detail, our work reveals a num-
ber of interesting and previously unreported findings:

• A limited number of protocols provide assisting
data. Although standardized protocols like OMA
SUPL specification are available, many of them
are chipset-specific. The whole assisting infras-
tructure is generally hosted in North America.
This design adds significant latency for operation
in other places of the world for mobile content
distribution (Sec. III).

• While accuracy and speed of acquisition are
within the range of the expected performance
of A-GPS systems, the energy evaluation of A-
GPS receivers reveals a positive correlation be-
tween energy overhead and the network depen-
dence (Sec. III).

• A-GPS traffic has virtually no impact on the net-
work in terms of signaling and traffic volume.
However, it is frequently re-downloaded despite
its cacheability. Nevertheless, the control-plane
signaling can negatively affect the performance
of A-GPS receivers (Sec. V).

Despite the fact that A-GPS was originally de-
signed to operate more efficiently and faster than GPS,
this work reveals that the optimization benefits are
bounded to the implementation effort on the device
itself and the OS integration. The impact of the cel-
lular network and the support infrastructure are quite
neglected parameters in current system implementa-
tions. We believe that this work could bring some
light and research interest to the optimisation of A-
GPS technologies, perhaps requiring the addition of
new functionalities and features.

II. From GPS to A-GPS : Principles

GPS is a geolocation system designed to work at
worldwide scale. Started in the 1970s, it is based on a
fleet of satellites constantly broadcasting data frames
at a very low rate (50bps) to receivers on the earth’s
surface, allowing reception with a very low level of
signal. They transmit on the same frequency band (L1

band at 1575 MHz) using CDMA-like spread spec-
trum techniques and a pseudo random sequence. Each
satellite transmits frames composed of i) accurate tim-
ing information generated by an atomic clock em-
bedded into the satellite itself, ii) its precise orbital
information used to compute its location which re-
mains valid for up to 4 hours (the ephemeris), and iii)
ionospheric conditions and the operating status of the
whole system (the almanac).

Before decoding the ephemeris to compute its lo-
cation, any GPS receiver needs to acquire the satel-
lite’s signals and identify the visible satellites through
a frequency and code-delay search1. Once a satellite
is locked, the receiver can decode the data sent in the
frames received at a slow pace2 to compute its loca-
tion. When this information has been obtained from
enough satellites, the receiver can compute its own po-
sition using tri-lateration techniques. The whole pro-
cess can take several minutes. This is known as cold
start and can take even longer if there are bit errors
in frame reception. However, satellite re-acquisition
is faster than acquisition. In other words, if the re-
ceiver was recently active, the ephemeris, time and
last-known position (i.e, a priori position), are still
relatively accurate and allow the time required by the
frequency/code-delay search to be reduced, enabling
a position fix without having to fully decode GPS
frames transmitted by the satellites. This is known
as warm start and it can take about 30 seconds. Even
better, it is possible that the last known position and
the clock offset are valid so the receiver is able to ac-
quire GPS signals faster. This is known as hot start.

GPS receivers were initially designed for periods
of continuous navigation (order of hours) with a rela-
tively short fixing time (order of minutes). However,
a low TTFF on a mobile device is vital for the user
experience. A-GPS takes advantage of the benefits of
re-acquisition by providing assistance data in the form
of a coarse location estimation, time and orbital infor-
mation which is fetched from an online server using
a reliable link such as cellular networks. In particu-
lar, the orbital information is usually provided in the
form of an extended ephemeris which is obtained and
synthesised by a network of GPS receivers deployed
worldwide. Consequently, it has global and longer
temporal validity as it uses forecast techniques to pre-

1Due to satellites’ motion and Doppler effect, it is possible to
have up to 8.4 kHz of frequency shift (receiver’s motion is negli-
gible at pedestrian speed).

2Each GPS frame is broadcast every 30 seconds, and they are
composed of five sub-frames containing the ephemeris (transmit-
ted every 30 seconds), almanac (every 12.5 min as it is fragmented
in several frames) and time (every 6 seconds).
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Figure 1: Autonomous GPS and MSB location (user-
plane) A-GPS logic. The assisting data (gray boxes
and dot lines) is downloaded as a parallel process to
the normal GPS flow (white boxes).

dict the satellite’s orbit. As opposed to standalone
GPS receivers, A-GPS improves receivers’ sensitiv-
ity, allowing them to work sometimes even indoors as
reported by Kjærgaard et al. [2010]. However, there
are variations from one chipset to another. Depending
on whether the location computation is offloaded or
computed locally, A-GPS technologies can be classi-
fied as:

• Mobile Station Based (MSB) - Location compu-
tation is local. The A-GPS receiver (i.e. Mobile
Station) obtains extended ephemeris, almanac,
time and coarse location from a remote server.
The mobile device acquires GPS signals and
computes its position.

• Mobile Station Assisted (MSA) - Location com-
putation is offloaded. The server provides the
mobile device with the expected code delays and
Doppler values. The mobile device acquires
raw satellite’s signal and sends them to a remote
server which computes the location and returns
the results to the mobile device.

A-GPS technologies can be also distinguished with re-
spect to the channels used to provide assistance to the
mobile stations. In the control plane, assistance data is
based on 3GPP control standards such as GSM-RRLP.
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Figure 2: A-GPS logic according to packet capture.

In the user plane, the assistance data is encapsulated
over the IP network. A remarkable example is OMA
SUPL protocol. Hybrid solutions are also possible,
but most modern operating systems configure the A-
GPS receivers as user-plane and MSB. Their basic
theoretical logic is presented in Fig. 1. The download
of assistance data runs in parallel with the mainstream
GPS acquisition process.

III. A-GPS technologies

Most of the smartphone platforms provide analogous
features in terms of location services to the developer
and the end user. However, the final experience and
their openness may vary depending on the level of ab-
straction offered by the operating system and chipset
manufacturer. In order to get a bigger picture, we
completed a series of active experiments on a set of
Android and iPhone devices that can accurately rep-
resent the market as of first quarter 2012 in the UK 3.
The characteristics of these devices are detailed in Ta-
ble 2.

In order to collect and monitor the download of
assistance data over the cellular interface, we run
tcpdump in the background while these operations
are being performed. Despite important OS and hard-
ware operational differences, a common generic be-
haviour has been extracted from their traffic pattern
as described in Fig. 2. It helped us to realise that

3We use geo-tagged Flickr images, a popular photo service,
as an arbitrary index of popularity of these phoneshttp://www.
flickr.com/cameras/



Phone Google Nexus One Google Nexus S iPhone 3G Samsung Galaxy S2 iPhone 4S

GPS Chipset Qualcomm QSD8250 Broadcom 4751 Broadcom 4750 SiRF star IV Qualcomm MDM6610
Type MSB MSB MSB MSB, MSA or pure GPS MSB

Traffic classes gpsOne Bcom-LS + SUPL LTO SUPL gpsOne

Table 2: Mobile devices used for active experiments.

Class Connection Hostname IPs Object Whois

LTO (Broadcom) HTTP iphone-wu.apple.com 17.254.32.16 lto2.dat Apple

gpsOne
(Qualcomm)

HTTP
xtra1.gpsonextra.net 216.187.118.44

xtra.bin
Peer 1
Hosting

xtra2.gpsonextra.net both
xtra3.gpsonextra.net 69.90.74.197

gpsOne (iPhone4, Qualcomm) HTTPS iphone-ld.apple.com variable xtra2.bin Akamai
SUPL (Google) TCP 7275/7276 (SSL) supl.google.com 74.125.x.192 - Google
Bcom-LS
(Broadcom)

raw socket port7275
bcmls2.glpals.com 64.210.203.195

- Broadcom
bcmls.glpals.com 216.34.140.195

Table 3: Characteristics of A-GPS traffic classes.

control-plane latency found in cellular networks can
impair performance, and to identify the following traf-
fic classes:

gpsOne: Qualcomm proprietary technology. It
fetches an extended ephemeris (xtra.bin file) through
HTTP. The service is provided by three hostnames
xtraN.gpsonextra.net, where (N = 1,2,3) corre-
sponding to two IPs in the Peer 1 Hosting network.
A load balancing scheme is used to handle the re-
quests at DNS level (xtra2.gpsonextra.net can
assume both IPs while the other two are statically
mapped). This technology can be found in some An-
droid phones as well as in the latest iPhone versions
(from 4S). In the latter case, assistance is provided by
Apple servers4 rather than Qualcomm ones.
Long Term Orbit (LTO): Broadcom proprietary
technology (similar to gpsOne) used in earlier iPhone
devices (3G, 3GS and 4). A system daemon (lo-
cationd) performs a HTTP connection to iphone-
wu.apple.com in order to fetch the lto2.dat file5. This
data corresponds to chipset specific and satellite data
which is updated a few times a day (i.e, the ex-
tended ephemeris). Despite the quasi-static nature of
this type of content which makes it compatible to be
served through CDN’s, the support infrastructure is
fully centralized: iphone-wu.apple.com resolves into
a single Apple server located in the US.
TCP/7275, TCP/7276 (SSL): SUPL and customized
vendor protocols. Google SUPL supl.google.com ser-
vice is present in every single Android device. The
service can use SSL (port 7276). Although other mi-

4https://iphone-ld.apple.com/xtra/xtra2.bin
5http://iphone-wu.apple.com/7day/v2/latest/

lto2.dat

nor services provide SUPL support on port 7275, We
found that the majority of the traffic on this port is
related to bcmls.glpals.com and bcmls2.glpals.com.
These hostnames are two Broadcom specific servers
for proprietary assistance using an identified TCP pro-
tocol, that we refer to as Bcom-LS (Broadcom Loca-
tion Services).

Table 3 summarizes the characteristics of the four
classes of traffic identified for these popular devices.
For most of the technologies, a few servers, mainly
located in North-America are providing A-GPS assis-
tance for the entire world. A cross-check from other
vantage points in different countries (France, Italy,
Spain, UK, US) corroborates that observation. Fur-
thermore, DNS records are not properly adapted for a
large-scale deployment. For instance, DNS records
for gpsOne present a TTL of one day, mapped to
only three IPs, all hosted in North America under the
same autonomous system. Similarly, Google SUPL
servers resolve to a single physical IP, despite having
a CNAME record with a short TTL. Finally, Bcom-
LS on port 7275 also presents a very short TTL (1
min) that maps to a single IP in the US (without round
robin) serving the whole world. This makes the whole
assisting infrastructure highly vulnerable in case of
failure, but it is changing with newer releases. Newer
Apple devices (from iOS 4) rely on Akamai services
to increase the resilience and reduce latency. We fur-
ther observed two more types of traffic potentially re-
lated to A-GPS. First, we noticed that NTP requests
are performed in certain chipsets each time the A-GPS
receiver is used but it can be attributed to other oper-
ating system services to correct the time. Secondly,
iPhone devices use SSL to perform NPS operations.



Summary:

A-GPS technologies shipped on modern smartphones
differ from one device to another. Despite the pres-
ence of a standard protocol such as OMA SUPL, the
A-GPS ecosystem is clearly using a small set of pro-
prietary protocols. Furthermore, the assistance infras-
tructure for the entire-world is generally localised in
North America, making A-GPS vulnerable to failures.
In Sec. IV, we characterize the performance and en-
ergy consumption of two popular A-GPS chipsets try-
ing to find inefficiencies in the way these technologies
are integrated on mobile systems. We choose Android
devices due to their openness.

IV. Characterizing A-GPS perfor-
mance

Whenever an Android application requests an A-GPS
fix, the Java Location API is invoked (LocationMan-
ager). The Location Manager is responsible for ac-
cessing the low C/C++ layer (Android HAL layer) via
the GpsLocationProvider. That provides access to the
low level GPS functions from the chipset. The open
source nature of Android allows tracing the behaviour
of the Location Manager and other classes involved in
downloading the assistance data (e.g. GpsXtraDown-
loader and SntpClient for Qualcomm chipsets).

Handsets such as the Nexus S integrate the A-GPS
module in a completely different way. We have iden-
tified a binary daemon (gpsd) running in the back-
ground that acts as a middleware layer as shown in
Fig. 3 (the gray elements represent the basic compo-
nents expected on any Android device). Such a de-
sign modifies the standard work-flow by introducing
a software bypass between the A-GPS logic and the
cellular interface (blue arrow on the figure). Further-
more, a dump of the symbols of the gpsd uncovered
additional features such as NTP calls, SSL and SUPL
functions for NPS, and calls to other sensors such as
the magnetometer and accelerometer. This allows the
A-GPS daemon to directly access the network func-
tions without consulting the Android subsystem. This
causes an additional energy overhead as the OS may
perform such actions in parallel.

In this section, we conduct a series of experiments
designed to measure three metrics we consider as rep-
resentative of the A-GPS performance. We select ex-
clusively terminals endorsed by Google such as the
Nexus One and Nexus S. According to the specifica-
tions, these two handsets are running respectively a
Qualcomm and a Broadcom A-GPS chipset, hence it
covers two of the main manufacturers identified in the

Android	  Loca+on	  API	  

libril*	  	  
(provide	  RIL	  
func+ons)	  

libgps*	  	  
(provide	  GPS	  
func+ons)	  

RIL	  Daemon	  

3G	  Modem	  
(Data/Serial	  port)	  

GPS	  
(Serial	  port)	  

GPS	  Daemon	  

Figure 3: Software architecture of A-GPS on the
Nexus S.

previous section. The experiment is designed to see
some differences in their behaviour and performance
at the following levels:

1. Time to first fix or TTFF (seconds): time elapsed
between the instant in which the location engine
receives a location request until the request is ful-
filled. This is designed to address the usability of
A-GPS from a user perspective.

2. Accuracy (metres): difference between the true
location and that returned by A-GPS. It measures
the quality of the position fix.

3. Current draw (mA): amount of current expended
in acquiring a GPS location. It quantifies the en-
ergy cost of using A-GPS technology.

IV.A. Methodology

As already reported by Kjærgaard et al. [2010], the
performance of A-GPS depends on both handset de-
sign and on its context. For that reason, we performed
the experiments in three different environments (all of
them with clear sky conditions) as described in Ta-
ble 5. The scenarios were selected to cover realistic
situations in which A-GPS performance may be com-
promised.

For statistical significance and given the sudden
changes that can occur on the radio channels, TTFF
and accuracy experiments are repeated 25 times. We
placed the devices 10 cm apart from each other on
a surface for practical reasons, in the same position
and facing the same direction while they were sensing
location simultaneously. The “ground truth” is esti-
mated as the average fix between two Nexus One fix-
ing A-GPS locations for a long time and filtering out



Device Location
TTFF Cold start (s) TTFF Warm start (s)

Median 98 Percentile Median 98 Percentile

Nexus S
Open sky 10.1 28.0 9.1 18.1
U. canyon 34.8 143.9 13.1 50.5
U. park 6.9 14.0 7.1 13.1

Nexus One
Open sky 4.1 28.1 4.0 6.1
U. canyon 10.1 86.1 4.1 11.1
U. park 3.1 10.1 3.1 8.1

Table 4: Summary of the TTFF per device in three different environments.

Location Sats
Open sky. Metal columns used for street lightning
were present. Concrete ground

11

Urban canyon. Narrow stairs between concrete
walls to limit viewed sky. Concrete ground

7

Urban park. Park with relatively dense tree
canopy. Earth ground

12

Table 5: Description of the experiment locations and
maximum number of satellites locked

outliers. This methodology has been widely used in
previous experiments such as the study by Kjærgaard
et al. [2010]. As Doppler effect at pedestrian speed
is negligible, whether the devices are static or moving
does not affect the results.

Estimating power consumption is harder to quan-
tify than accuracy and TTFF. We measure the current
drawn by the handset using a Monsoon’s PowerMoni-
tor. Any unnecessary hardware module is off. The en-
ergy evaluation was done on a controlled environment
with clear sky view. To synchronize the traces ob-
tained from the mobile device with the power monitor
ones, we generate a current peak pulse by turning on
and off energy-intense resources (e.g, camera flash)
as to identify when the experiment begins, using USB
disconnection events to trigger the data collection.

IV.B. TTFF

Ideally a cold start in A-GPS receivers should look
like an autonomous GPS warm start. The violin plot6

shown in Fig. 4 corroborates that statement as the
TTFF is usually below 30 seconds for both handsets
instead of minutes as for typical autonomous GPS
receivers as reported by Wing et al. [2005]. How-
ever, despite having network access to obtain assis-
tance data, contextual factors still play an impor-
tant role on the performance of A-GPS receivers.
As a consequence, the TTFF becomes more unpre-
dictable if environmental and network conditions are

6A violin plot is a combination of a box plot and a kernel den-
sity plot that also shows the probability density.
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Figure 4: Violin plot and box plot of the TTFF in three
different locations for a Nexus S and a Nexus One

not favourable as in urban canyons, where the TTFF
in a cold start presents a heavy tailed distribution re-
quiring up to 100 seconds to perform a fix in this en-
vironment.

Table 4 summarizes the results obtained for the de-
vices under study in the three environments analyzed.
As expected, being on a warm start helps to reduce
the TTFF. The 98th percentile decreases notably for
both devices independently of the environment. Over-
all, the Nexus S is likely to have a higher TTFF if
compared to the Nexus One. In fact, while the exper-
iments have been carried with all devices lying on a
surface, we noticed that the TTFF for a Nexus S is im-
proved when the device is lifted up or held on a hand
as the antenna is located on the back. Consequently,
its reception is negatively affected when the device
is acquiring GPS signals7. Impact of the body posi-
tion and gesture on some A-GPS receivers has been
already studied by Blunck et al. [2011].

IV.C. Accuracy

Fig. 5 shows the density of location fixes on a 2D sur-
face obtained during the experiment done to evaluate
the TTFF. As we can see, the accuracy during a warm
start (blue points) is generally better than in a cold
start (red points). The reason is that the receiver is

7http://www.ifixit.com/Teardown/

Nexus-S-Teardown/4365/2
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able to acquire more GPS signals, having more free-
dom about which satellites to use in order to compute
its location. This decision is typically based on signal
strength and the expected position of the satellites as
studied by Hadaller [2008].

Consequently, most of the location fixes obtained
on a warm start are within the region of interest that
contains 95% of the fixes for any platform and envi-
ronment, as the receiver can select the signals from
the most adequate satellites. Fig. 6 shows the consec-
utive fixes reported by a static device for 15 minutes.
In presence of fluctuations on the time of flight and
the clock offset caused by a poor reception or even
reflections on the radio signals, consecutive location
fixes can jump from one place to another causing tra-
jectories of several tens of meters that can be observed
across all the scenarios since the first location fix.
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details 150 seconds while on the right only the first
24 seconds The dashed lines indicate network traffic
while the solid black line marks the first location fix.

IV.D. The energy cost of the network de-
pendency

The studies by Zhang et al. [2010], and by Pathak
et al. [2012] report A-GPS as one of the most energy-
intensive resources on a mobile system. As opposed to
simplified measurements based on power models ob-
tained from linear regression techniques such as Pow-
erTutor, we can obtain detailed information about the
costs of performing different tasks such as turning on
the A-GPS receiver, downloading assistance data over
the cellular network, and fixing location.

Assistance data is vital to reduce the TTFF and im-
prove the sensitivity of the receiver. However, us-
ing the cellular interface to obtain these data imposes
an energy-overhead on the mobile client. The works
by Qian et al. [2010], and Balasubramanian et al.
[2009] are just two examples among the many stud-
ies that analyzed the characteristics of the current cel-
lular stack and the tied relationship with the battery
life in mobile devices. Depending on the volume and
the frequency of the traffic, and according to the in-
activity timers of the RNC states, the mobile device
will exhibit different power levels on its radio inter-
face which define its power consumption, latency, and
throughput.

Fig. 7 shows the current consumed (y axis) by the
A-GPS modules shipped on a Nexus S (top row) and a
Nexus One (bottom) for a cold start, beginning when
the application requests a location fix to the Location-
Manager. The figures on the left show the current
draw during 150 seconds whilst the initial 24 seconds
are detailed on the right side. The vertical lines cor-
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Figure 8: Power consumption during a warm start for
a Nexus S (left) and a Nexus One (right) during a
minute. The dotted black lines represent new loca-
tion fixes and the blue dashed ones acquisition of as-
sistance data. We can see that the Nexus One does not
require acquiring assistance data on a warm start.

respond to requests for assistance data, actions that
happen when the A-GPS receiver is turned on for at
least 15 seconds. In these power measurements it is
possible to clearly identify the energy overhead at-
tributed to downloading assistance data: 401.9 mA
and 338.6 mA on average for the Nexus One and the
Nexus S respectively, including CPU costs and RRC
inactivity timeouts. As we can see, relying on cellu-
lar networks adds a significant energy overhead on the
mobile client, which is positively correlated with the
network conditions and the RNC inactivity timeouts
defined by the network operator. Once the cellular in-
terface is set IDLE (or in paging mode), the current
draw for both chipsets decreases to 266.7 and 167.9
mA approximately respectively.

Fig. 8 shows the current draw on a warm start.
In this case, the A-GPS module should not depend
that much on assistance data (a valid copy should
be already available on the device) but the Nexus S
still imposes an energy overhead caused by the net-
work activity. Despite the lower current draw for
the Nexus S when the cellular interface is IDLE,
its apparent dependency on cellular traffic implies
higher energy consumption with respect to Nexus
One. This is clearly shown in the violin plot repre-
sented in Fig. 9 showing the distribution of the en-
ergy (in mAh) required to fix a location per device,
and GPS state. Considering the network traces col-
lected for the phones listed in Table 2, we can map
this to the fact that the Nexus S combines two A-GPS
traffic classes: the Broadcom specific on port 7275,
followed by SUPL traffic to Google. The combina-
tion of these technologies tends to reduce the power
efficiency of this device, especially for single shot lo-
cation requests.
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Figure 9: Energy consumed until the TTFF (i.e.
single-shot fix) for a Nexus One and a Nexus S in a
cold (left) and a warm start (right).

Summary:

A-GPS does not necessarily improve accuracy but
it reduces notably GPS’s TTFF at the expense of a
higher current draw attributed to fetching assistance
data over the cellular link. Our analysis revealed per-
formance differences across mobile handsets, mainly
due to integration issues that can double the energy
consumption until the first fix. The case of the Nexus
S illustrates the difficulties for hardware manufacturer
to implement innovative schemes that were not ini-
tially planned in the original framework (in this case,
Android). Based on Sec. III findings, we define a rule-
set that will be used in Sec. V against a large data set
of cellular traffic traces. This analysis will allow us to
better understand the way millions of mobile handsets
obtain assistance in the wild over a day.

V. One day of A-GPS traffic

In this section we present a characterization of A-
GPS traffic observed in a large European mobile op-
erator. We refer to a data set of mobile traffic col-
lected on August 13th, 2011 at 8 vantage points which
share the load of the entire country. It contains 1.7
billion connections corresponding to 22 TB of vol-
ume downloaded by more than 3 millions of mobile
subscribers. The monitoring activity at each vantage
point is reported in a set of text log files. Each en-
try in the logs contains a set of standard information,
such as IPs, ports, number of bytes downloaded, and
some other HTTP specific information, such as con-
tent type, HTTP user agent, and HTTP response code.
Given that NTP can be generated by other background
services and applications, it is not included in the net-
work study as it can add uncontrolled noise. Likewise,
the SSL connections found in iOS are also filtered out
as they seem to be related with NPS technologies.

Each user is identified with an anonymized unique
ID and each line of the logs corresponds to a different



(a) Comparing O.S.

Device Fl[k] % Vol[MB] % Usr[k] %

iPhone 792 0.075 29108 0.198 309 14.33
Android 260 0.141 2583 0.116 78 14.87
Total 1051 0.085 31692 0.187 387 14.44

(b) Breakdown Android A-GPS

A-GPS class Fl[k] (%) Vol[MB] (%) Usr[k] (%)

gpsOne 24 9.04 801 31.02 16 21.30
SUPL 124 47.79 93 3.60 52 66.93
Bcom-LS 112 43.17 1689 65.39 15 20.28
Total 260 100 2583 100 83 108.51

Table 6: A-GPS data set.

TCP connection performed by an user. We identified
11 different types of mobile operating systems in the
data set but Android and iPhone devices account for
96% of both volume and flows. iPhone is the most
popular platform type accounting for 70.7% of the
subscribers as opposed to 17.3% of Android devices,
generating 83.5% and 12.5% of the traffic volume re-
spectively. As a consequence, for the remaining part
of this section we focus solely on iPhone and Android
devices. Unfortunately, as the data set accounts ex-
clusively for one day of traffic, an extended and long-
term characterization of this traffic is out of the scope
of this work. However, we aim to provide an overview
of the main properties of A-GPS traffic, highlighting
macroscopic effects also affecting the user experience.
We characterize each class of assisting traffic, inves-
tigating the volumes generated and the time elapsed
between subsequent requests done by each device.

V.A. Volumes

Table 6 reports the amount of A-GPS traffic extracted
from the cellular log using the set of rules obtained
in Sec. IV. Table 6(a) compares the amount of A-
GPS traffic with respect to the device OS considering
number of flows, bytes, and mobile subscribers (per-
centages are related to the amount of A-GPS traffic for
each OS).

As iPhone adopted only LTO at the time of the data
set (iPhone 4S and iPhone5 came later on the market),
Table 6(b) breaks down the A-GPS traffic per assist-
ing protocol for Android. Google SUPL is the most
common one, being responsible for the higher num-
ber of flows but the smallest number of bytes. We ob-
served that 8.51% of devices using SUPL where using
also one of the other two classes. We link this obser-
vation to the fact that SUPL configuration is directly
provided in the Android Open Source Project and its
up to the A-GPS implementation to use it or not.

Fig. 10(a) reports the CDF of the total number of

flows generated by each user during the whole day
for the four classes of traffic. While only 2.87% of
the users have more than 10 flows in the day for
LTO, gpsOne and SUPL, 3.47% of the users gener-
ate more than 30 flows in the day towards the two
Bcom-LS servers. Fig. 10(b) reports the CDF of the
total number of bytes downloaded in the day by each
user. SUPL volume is 10 times smaller than the other
three classes. LTO and gpsOne traffic distributions are
very similar as their requests are composed of mes-
sages of nearly 40 KB thus forcing a RNC promo-
tion to a dedicated channel. LTO traffic tail is heavier
due to the higher number of flows requested as seen
in Fig. 10(a), whereas Bcom-LS presents a bimodal
distribution (requests of 40KB and 1KB). Given their
similarities, it is reasonable to presume that the con-
tent delivered is similar while the protocol is different.

Based on the number of users requesting assisting
data, we can state that Broadcom dominates the mar-
ket as they are shipped in pre-iPhone 4 devices as
shown in Table 6(a). However, different technologies
coexists in the Android ecosystem. An analysis based
on the UserAgent field of the HTTP requests reveals
that Qualcomm is the leading vendor in Android with
62.27% of the devices. Fig. 13 reports a tree map of
both vendors and type device model popularity based
on the number of Android devices generating A-GPS
traffic during the day.

V.B. Inter request time

A-GPS data consists of different type of content, from
satellite info to cell IDs and time. This data, espe-
cially satellite info (e.g, LTO and gpsOne), is highly
cacheable, and has a temporal validity of several days
as described by Frank Van Diggelen [2009]. However,
between 14.65% and 54.47% of devices downloaded
such data more than once a day, causing unnecessary
energy and signaling costs.

Fig. 10(c) reports the inter request time of consec-
utive requests performed by each device for the four
classes of A-GPS traffic. Unexpectedly, results show
the presence of re-downloads within one minute. In
particular, 70% of consecutive requests on iPhone de-
vices are interleaved by less than 30 seconds. This is
in part related to the presence of some outliers which
obtain the content hundreds of times in the day. How-
ever, results do not change when the same measure-
ment is performed considering only devices with a
maximum of five downloads/day. A deeper analysis
of the traffic reveals that these users were legitimately
using A-GPS for location-based applications, such as
Google Maps. On the other hand, the gpsOne dis-
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Figure 10: A-GPS traffic analysis for devices with more than a flow per day.
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Figure 11: Distribution of the download time for the
gpsOne xtra.bin and NTP RTT over 3G.

tribution presents a sharp knee around 300 seconds,
possibly corresponding to a timeout. For SUPL and
Bcom-LS servers, the curves are smoother with two
timeouts at one and five hours. 8% and 40% of the
consecutive requests happen in less than 100 sec for
SUPL and Bcom-LS respectively, thus forcing a larger
number of network promotions.

V.C. The impact of cellular networks la-
tency

The control-plane latency required to allocate a radio
channel in cellular networks implies that the time re-
quired to reach the servers is non-negligible. We run
experiments on one of the phones to quantify its im-
pact. First, we measured the RTT of performing 1000
NTP lookup on the national NTP pool and download-
ing the extended ephemeris for gpsOne on a 3G inter-
face every 30 seconds. The download time histogram
for both types of assisting data is shown in Fig. 11.
The same effect can be seen in the case of LTO. As
feared, the impact of powering up a radio to down-
load a resource from a remote IP (possibly located in
another country) has a non negligible download time
over 3G which varies from 2 to 4 seconds. The energy
expenditure also increases with higher RTTs.

Furthermore, we evaluated the impact of the usage
of NTP over the 3G network with variable RTT (in-
cluding the control-plane latency). Fig. 12 shows the
time error (y axis) as a function of the RTT (x axis).
As we can see, the NTP error increases linearly with
network latency. In that case, the benefits for faster
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Figure 12: Impact of network latency on the accuracy
of 1000 NTP lookups. Android’s SNTP client error
increases linearly with network latency.

satellite acquisition and location fixing achieved by
time synchronization are likely to be affected by the
potential errors caused by the network latency and the
download time.

Summary:

The small amount of data downloaded and the num-
ber of flows observed for assisting GPS do not impact
on the network resources of the hosting operator, as
well as the data plan of the user. However, the strong
dependency on the network may sometimes impair
performance due to network latency (mainly control-
plane latency) while increasing the energy cost of lo-
cation operations. The analysis revealed chipset in-
tegration inefficiencies such as lack of caching. Al-
though the extended ephemeris has a nominal validity
of two weeks, multiple re-downloads happen within a
one minute time-frame.

VI. Re-thinking A-GPS

In the previous sections, we have seen the limitations
of A-GPS mainly due to the dependency on cellu-
lar networks and the strong layering on the OS de-
sign. With the knowledge obtained from the previous
sections, we will discuss different research areas and
problems that can improve the way assistance is per-
formed both on the client and the support architecture.
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Figure 13: Tree map of the vendor popularity for Android devices. Numbers in brackets indicate the share of
users identified for each Android device on the cellular network dataset.

On the client:
Location drivers can use networking resources and
sensors autonomously without any coordination with
the OS. This behavior is unexpected, especially on
embedded system, where a good integration of the dif-
ferent modules is key to achieve a good performance.
A more strict integration with the OS can provide im-
portant energy savings by avoiding redundant and un-
necessary access to such power-hungry resources.

The network usage when A-GPS is operative has
a non negligible energy expenditure, especially in the
use of single-shot applications with check-in and geo-
tagging capabilities. Although, most of the assistance
data is highly cacheable, neither the OS nor the loca-
tion APIs incorporate caching capabilities. As an ex-
ample, the extended ephemeris could be corrected on
the handsets by porting some of the logic used to gen-
erate the files to the end-points whenever new satellite
frames are received.

Even time can be cached. A centralised time server
can use periods of connectivity (e.g, by piggyback-
ing RNC promotions caused by other applications) to
perform NTP lookups. It can help to correct the clock-
drift, as well as the latency error shown in Fig. 12,
serving immediately time to applications. The OS can
exploit its central role to monitor the staleness of the
local data and pre-fetch it whenever satisfactory con-
ditions occur. This has two immediate benefits: i) it
allows reducing the usage of the cellular network even
for a cold-start with A-GPS operations, and ii) it al-
lows the A-GPS receiver to have valid data as soon as
possible, reducing the negative impact of the high la-
tency (including the control-plane one) of cellular net-
works when fetching assistance data as shown Fig. 11.
However, identifying when and how data must be pre-
fetched is key to optimise the whole system as it can
increase the volume of mobile traffic and energy costs.

On the assisting infrastructure:
The supporting infrastructure - in terms of redundancy
of DNS records, TTL of these records and servers re-
dundancy, and geographical distribution - is not prop-

erly adapted for the requirements of a world-wide A-
GPS deployment with millions of mobile devices de-
pending from it. We have shown that only a couple of
servers were used for the entire A-GPS network sup-
port on the analyzed country. Exploiting CDNs for
assistance can provide important benefits, as well as
incorporating assistance on network components such
as Wi-Fi APs or even neighbouring devices.

VII. Related Work

Paek et al. [2010] looked at the performance of stan-
dalone GPS receivers in urban and rural scenarios.
Hadaller [2008] analysed the impact of receivers’ mo-
bility, whereas Ramos et al. [2011] studied how to
improve the acquisition phase at the signal processing
phase. Little research effort was focused on a holystic
analysis of A-GPS technologies. Nevertheless, Kjær-
gaard et al. [2010] analyzed A-GPS performance in-
doors, whereas Blunck et al. [2011] characterized the
impact of antenna design and user gesture on the accu-
racy and performance of the receiver. The later article
also proposed a pure GPS signal classification method
to discriminate the environment at the cost of keeping
the A-GPS receiver active.

Nevertheless, there is a broad literature about
energy efficiency for location sensing and mobile
smartphones as surveyed by Vallina-Rodriguez and
Crowcroft [2012]. In particular, Paek et al. [2011],
Zhuang et al. [2010], Lin et al. [2010], and Kjaer-
gaard et al. [2009] studied how to combine different
location sensors such as A-GPS, NPS, compass and
accelerometer to reduce the energy consumption in
navigation modes. They used forecasting, substitu-
tion, suppression, piggybacking and adaptation tech-
niques for outdoors localisation. Liu et al. [2012]
proposed an MSA technique based on offloading some
calculations to the cloud. With few milliseconds of
raw satellite’s data, it can estimate the device’s past
locations by exploiting information from public, on-
line databases. Unfortunately, it is still dependent on
network access.



VIII. Conclusion
In this paper, we presented the first full character-
ization of A-GPS technologies along five different
axis: i) technology and protocols used (Section III),
ii) TTFF, accuracy, and energy consumption (Sec-
tion IV), and iii) network dependency (Section V).
For that, we used active experiments on modern A-
GPS modules as well as passive experiments run on
cellular network traces obtained from a major Euro-
pean carrier. The results reveal that A-GPS technol-
ogy exhibits a severe variability in its performance and
energy consumption despite offering reasonable per-
formance in terms of TTFF and accuracy. The main
reasons behind are related to the way the chipsets
use cellular networks to obtain assistance and how
they are integrated in the OS. We notice that the pat-
terns for fetching data do not match with the sup-
posed temporal validity (and cacheability) of the as-
sistance data, adding unnecessary transmissions over
the energy-costly cellular interface. We discuss sev-
eral possibilities for improvement at different levels
in order to guarantee a better performance (in terms
of TTFF), energy consumption (reduce network de-
pendency), integration (better coupling between the
mobile network capabilities and the A-GPS modules),
and reliability (adding caching and pre-fetching ca-
pabilities for assistance data on the handsets, and in-
crease the security of the assisting infrastructure).
Acknowledgements: A. Finamore has been sponsored
by the EU-IP mPlane project under the European Comis-
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