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Abstract—For a user to access any resource on the Internet,
it is necessary to first locate a server hosting the requested
resource. The Domain Name System service (DNS) represents
the first step in this process, translating a human readable name,
the resource host name, into an IP address. With the expansion
of Content Distribution Networks (CDNs), the DNS service has
seen its importance increase. In a CDN, objects are replicated
on different servers to decrease the distance from the client to
a server hosting the object that needs to be accessed. The DNS
service should improve user experience by directing its demand
to the optimal CDN server. While most of the Internet Service
Providers (ISPs) offer a DNS service to their customers, it is now
common to see clients using a public DNS service instead. This
choice may have an impact on Web browsing performance. In this
paper we study the impact of choosing one DNS service instead
of another and we compare the performance of a large European
ISP DNS service with the one of a public DNS service, Google
DNS. We propose a causal approach to expose the structural
dependencies of the different parameters impacted by the DNS
service used and we show how to model these dependencies with
a Bayesian network. This model allows us to explain and quantify
the benefits obtained by clients using their ISP DNS service and
to propose a solution to further improve their performance.

I. Introduction

Each time an Internet user wants to access a resource, he
uses an human readable name called Uniform Resource Loca-
tor (URL), containing the domain name of the administrative
entity hosting this resource. However, a domain name is not
routable and needs to be translated into the (IP) address of
a server hosting the resource the client wants to access. It
is the role of the DNS service to translate the domain name
to the corresponding IP address. Many popular services such
as Youtube, Itunes, Facebook, Twitter, rely on CDNs where
objects are replicated on different servers and in different
geographical locations to optimize the performance for their
users. When a client wants to access one of these services, its
default DNS server contacts the authoritative DNS server for
the domain hosting the resource the client is requesting. Based
on the location the request is coming from, the authoritative
DNS redirects the client to the optimal server. Most of the ISPs
provide a DNS service, but it is now common to see customers
using a public DNS service instead [1]. Clients using the DNS
service of their ISP are served by a local DNS server. Local
DNS servers are closer to clients, their usage provides a more
accurate location information to the CDN compared to the
locations represented by the few DNS servers offered by a
public DNS service such as the Google DNS service. There
have been several studies suggesting that public DNS services
do not perform as well as local DNS services provided by
ISPs, mainly because of the impossibility of public DNS to

correctly communicate the location of the clients originating
the request [2], [3].

However, studying the performance of the users accessing
Internet resources is a complex task. Many parameters influ-
ence the end user experience and the relationships between
these parameters is not always observable or intuitive. It is
therefore necessary to adopt a simple, yet formal, model that
allows us to understand the role of a given parameter and its
dependencies with other parameters. Bayesian networks offer
a simple and concise way to represent complex systems [4]. In
this paper, we use a Bayesian network to represent the causal
model of the impact of the DNS service on the throughput
performance experienced by clients accessing resources via the
Akamai CDN and to capture the dependencies between the
different parameters impacting the throughput of the clients.
We further use this model to predict the effect on throughput
performance had the client used another DNS service. This
prediction allows us to understand the impact of choosing one
DNS service instead of another. From the same model, we are
also able to indicate how to improve the performance of the
users of the local DNS.

This work differs from previous studies of DNS services
in several points:

• We use a causal approach that formally models the
structural dependencies of the different parameters
influencing the user experience (throughput).

• After observing that the users of the local DNS experi-
ence better performance than the Google DNS users,
we show that such improvement is made through a
redirection of the local DNS users to closer servers
and we are able to quantify such performance im-
provement.

• The causal model of our system shows that the TCP
parameterization of the servers accessed by the users
of the Google DNS plays a key role in improving their
performance. Besides fully explaining the observed
performance, this result also indicates a solution to
further improve the performance of the users of the
local DNS.

Overall, the main contribution of this work resides in the
methodology that is presented, and in its use of counterfactuals
to understand the causal dependencies of complex systems.

In Section II, we present causal models and their use to
predict interventions, summarizing some of the main concepts
from [5], [6]. Section III presents the environment of our
study and the description of the parameters constituting our



system. Section IV presents our study of the DNS impact on
the throughput. In particular we present the causal model of our
system where we can observe the impact of the DNS choice
on the throughput. Our approach also allows us to predict
the improvement that could be achieved by modifying the
parameterization of the servers accessed by the users of the
local DNS service. Section V compares our approach to other
works and Section VI summarizes the method presented and
proposes some directions for exploiting further this method.

II. Causal model definitions and usage

It is very challenging to model complex systems and to
structure knowledge obtained from its passive observations.
Many of the existing works rely on the presence of correlation
between different events observed simultaneously (see [7] and
references therein). However, correlation is not causation and
the detection of correlation between two parameters does
not inform us on how they are related. One can impact the
other, or the opposite, or an unobserved parameter can impact
these two parameters simultaneously. The difference between
correlation and causation plays an important role if we want
to use this knowledge to decide on how to improve our system
by partly modifying its behavior. A causal approach tries to
solve this issue by uncovering the structural dependencies
between the parameters of the system one wants to understand
and to manipulate. The capacity to predict the effects of a
manipulation on the system parameters is an important strength
of causal models as they are stable under intervention. The
stability under intervention means that a causal model, inferred
from the observations of a system in a given situation, is
still valid if we manually change the system mechanisms,
redefining the systems laws. The manual modification of the
system parameters is called an intervention. Interventions con-
sist in modifying the behavior of a component of the system,
removing the influence from its direct and remote causes and
manually fixing its variations. Causal models, and the causal
theory [5], [6], allow us to predict the behavior of the different
parameters of the inferred model after an intervention where
we modify the system, using passive observations made prior
to this intervention.

In this section we present the PC algorithm [8] that is used
to infer the causal model of our system. We also describe the
different properties of a causal model as described in [5], [6].

A. Causal model inference

For our work, we use the PC algorithm [8] to build the
Bayesian graph representing the causal model of our system.
This algorithm takes as input the observations of the different
parameters that form our system and infers the corresponding
causal model. In our representation of a causal model as a
Bayesian network, each vertex represents one parameter of
our system and the presence of an edge from a vertex to
another vertex (X → Y) represents the existence of a causal
dependence of a parameter (corresponding to vertex Y) on
another parameter (corresponding to vertex X).

The first step of the PC algorithm consists in building a
fully connected and unoriented graph, called skeleton, where
each parameter is represented by a vertex and connected to
any other parameter. In a second step, all the unconditional

independences (X y Y) are tested for all couples of param-
eters. The edges between two nodes whose corresponding
parameters are found independent are then removed. For the
parameters whose nodes are still adjacent, we test if there
exists a conditioning set of size 1 that makes two adjacent
nodes independent. If such set exists we remove the edge
connecting the corresponding two nodes, otherwise the edge is
not removed. This step is repeated, increasing the conditioning
set size by one at each step, until the size of the conditioning
set reaches the maximum degree of the current skeleton (the
maximum number of adjacent vertices for any vertex in the
current graph), which means that no more independence can
be found. The final step consists in the orientation of the edges.
First, we orient all the V-structures (subgraphs X−Z−Y where
X and Y are not adjacent) and then orient as many edges as
possible without creating new colliders1 or cycles [5].

It is worth noting that the PC algorithm is able to infer a
causal model up to its independence equivalence class (called
the Markov Equivalence Class and represented by a partially
oriented graph). It often happens that several graphs exist that
imply the detected independences. See Section II-B for the
equivalence between graphical connectivity and dependence.
As a consequence, the output of the PC algorithm is a graph
where only the independences leading to a unique orientation
of the edges are represented. The other edges are left unori-
ented. In our work we use domain knowledge to select the
member of the equivalence class inferred by the PC algorithm
closest to our understanding of the system under study. Note
that the Tetrad software [6] offers the possibility to represent
all the members of a given Markov Equivalence Class.

B. D-separation

The d-separation criterion is a graphical criterion to judge,
from a graph, the independence between two parameters, rep-
resented by their corresponding nodes. D-separation associates
the notion of connectedness with dependence. Therefore, if
there exists a directed path between two nodes, they are said to
be d-connected and their corresponding nodes are dependent.
On the other hand, if we condition on one of the nodes of this
path then this node is said to block the path and the parameters
are conditionally independent. When studying d-separation, an
important notion is the one of collider (see footnote 1). The
presence of a collider on a (undirected) path blocks this path
and conditioning on a collider unblocks the path. Intuitively,
two independent causes become dependent if one conditions
on their common consequence.

C. Causal model properties and theorems

In this section we suppose that we have already a causal
model of our system represented by a Bayesian network and
we focus on two parameters X and Y, where Y represents
the performance of our system. We are interested in the
global effect on Y when intervening on X, including the
effects mediated by external parameters also impacted by this
intervention. We call this causal effect the total causal effect.

1a collider, Z, is a vertex part of an oriented subgraph X → Z ← Y where
X and Y are not adjacent.



We denote by do(X = x) (or do(x)) the intervention that
consists in intervening on the the parameter X by fixing its
value to be x.

If we use G to denote the Bayesian graph that represents
the causal relationships between the parameters of our system,
we use GX to denote the sub-graph of G where all the edges
entering X are removed and GX the sub-graph of G where all
the edges exiting X are removed. We can use the rules of do-
calculus from [5] to estimate the distributions of the parameters
of our system after an intervention based on their distributions
prior to this intervention. Note that these rules do not rely
on any assumption regarding the distributions or functional
dependencies of the parameters. In particular, P represents
the (possibly multinomial) probability distribution specified by
the probability mass function or probability density function
depending on the nature of the parameters.

Theorem 1 (3.4.1 from [5]): (Rules of do calculus) Let G
be the directed acyclic graph associated with a causal model
[...] and let P(·) stand for the probability distribution induced
by that model. For any disjoint subsets of variables X, Y and
Z we have the following rules.

Rule 1(Insertion/deletion of observation):

P(y|do(x), z,w) = P(y|do(x),w) if (Y y Z | X,W)G
X

(1)

Rule 2(Action/observation exchange):

P(y|do(x), do(z),w) = P(y|do(x), z,w) if (Y y Z | X,W)G
XZ

(2)

Rule 3(Insertion/deletion of intervention):

P(y|do(x), do(z),w) = P(y|do(x),w) if (Y y Z | X,W)G
XZ(W)
,

(3)
where Z(W) is the set of Z-nodes that are not ancestor of any
W-nodes in GX .

D. Density estimation

As no assumption can be made on the distribution of
the parameters, we estimate the multidimensional probability
density functions via Copulae [9], using the Sklar theorem.

The Sklar theorem stipulates that, if F a is mul-
tivariate cumulative distribution function with marginals
(F1, . . . , Fi, . . . , Fn), there exists a copula C such that

F(x1, . . . , xi, . . . , xn) = C(F1(x1), . . . , Fi(xi), . . . , Fn(xn)). (4)

In our work, we chose Gaussian copulae as they are smoother
and cope better with the constraint of limited data. In the
bivariate case, the Gaussian copula is defined as:

Cρ(u, v) = Φρ(Φ
−1(u),Φ−1(v)), (5)

where ρ represents the correlation matrix and Φ the CDF of
the standard normal distribution. The marginals, Fi(xi), are
estimated using normal kernels.

III. Experimental set up

A. Experiment design

To observe the local DNS queries and answers for the
clients using their ISP DNS service, we place ourselves at a
Point of Presence (PoP) of a large European ISP and observe
the traffic directed to or coming from the Akamai CDN.
To model the impact of the DNS choice on the ISP client
throughput, we make three choices: i) We only focus on the
traffic carried by the TCP protocol. ii) To better capture the
DNS and network impact on performance, we restrict ourselves
to voluminous connections that go beyond the TCP slow start
phase and carry at least 2MB. iii) As more than 90% of the
observed connections use either Google DNS (GDNS) or the
DNS of the local ISP(LDNS) we consider only these two DNS
services.

The probe is placed between the client and the server. We
call internal network, denoted as isp network, the part of the
network between the client and the probe. On the opposite,
we call external network the part of the network between the
probe and the server, assimilated to the Internet network and
denoted inet network. The traffic is observed on two different
days, a Thursday and a Sunday, from 5.30 pm to 9.30 pm
(peak time).

B. Model parameters

We use the Tstat software [10] to passively measure per-
flow statistics. We select a subset of statistics representing
the parameters of our system that are known, from domain
knowledge, to impact the throughput. We obtain a dataset
where each sample represents a single connection and for each
connection several parameters are observed. We have about
7000 connections, which represent our sample size.

We measure several parameters in addition to the Tstat
statistics [10]: the DNS service, the number of hops between
the client and the server and the server IP address, represented
by its corresponding Autonomous System (AS) number.

C. Observation summary

For each connection, we record 19 parameters. In Table I,
we present the average (µ), minimum (min), maximum (max),
standard deviation (σ) and coefficient of variation (CoV = σ

µ
)

of each of the 19 parameters over the 7000 connections. As
this work focuses on the comparison between the performance
of LDNS users and GDNS users, Table II presents the statistics
for the connections where the LDNS is being used and for the
connections where the GDNS is used separately.

We use the following notations:

• Parameters with the prefix isp represent the isp net-
work statistics while the ones with the prefix inet
represent the inet network statistics.

• The suffix avg represents the average value of a given
parameter over a connection

• The suffix std represents the standard deviation of a
given parameter over a connection



TABLE I. Summary of the different parameters

Parameter µ min max σ CoV

dstip N.A. 1300 34000 N.A. N.A

dns N.A 1 3 N.A. N.A.

dow N.A. 4 7 N.A. N.A.

tod (s) 7100 52000 78000 4400 0.1

isprttavg (ms) 76 0 19000 460 6.1

isprttstd (ms) 100 0 37000 960 9.2

ispnbhops 1.8 1 3 0.51 0.3

inetrttavg(ms) 26 0.48 660 27 1.0

inetrttstd (ms) 8.2 0 4700 61 7.5

inetnbhops 9.4 2 21 2.8 0.3

rwin0 0.83 0 360 11 13

rwinmin (kB) 31.3 0.004 65 22.5 0.9

rwinmax (kB) 213 17.5 2625 150 0.7

cwinmax (kB) 150 7.3 1625 103 0.7

cwinmin (kB) 0.9 0.001 1.5 0.6 0.7

retrscore 0.005 0 0.19 0.009 1.9

rto (bool) 0.11 0 1 0.32 2.8

nbbytes (MB) 23.8 2.1 3875 138 5.7

tput (Mbps) 3.2 0.006 35 2.6 0.8

• The rto parameter represents the presence of at least
one packet retransmission due to a time out and
retrscore the fraction of retransmitted packets.

• The parameters rwin* and cwin* represent receiver
window and congestion window metrics respectively.

• The day of the week and time of the day are captured
by the variables dow and tod respectively.

It should be noticed that the congestion window is a sender
parameter. Tstat estimates the congestion window by looking
at the amount of data that has not been acknowledged yet,
namely the in-flight size. As the sender-to-the-probe path is
typically very high speed (∼10Gbps), and the bottleneck is
after the probe (e.g., the ADSL link), the in-flight-size is a
very good approximation of the sender congestion window.

Destination IP (dstip), DNS (dns) and days (dow) are
categorical data for which the average value, standard deviation
or coefficient of variation do not exist.

Two observations can be made when looking at the varia-
tion of the different parameters in Table I and will be referred
to in the discussion of the causal model of our system.

First, we can observe that the value of the average RTT
inside the ISP network (isprttavg) is almost three times as high
as the average RTT in the “Internet” network (inetrttavg). This
difference is due to the use of an ADSL link as access link and
the latency experienced by the packets entering or exiting the
ISP network. When many packets are being sent at the same
time they can create some congestion that implies high values
in the RTT. Such changes and variations can also be observed
in the standard deviation of the RTT that is more than ten times
bigger in the internal network than in the external network.

Second, another information that does not appear in Table I,
64% of the connections experience at least one loss but only
27% of them show a retransmission score bigger than 0.5%.
This value suggests that, in cases of congestion, packets queue
in buffers but are not necessarily dropped.

IV. Causal study of DNS impact on the throughput

A. Modeling causal relationships

Using the PC algorithm [8] and the kernel based inde-
pendence test from [11] we obtain the Bayesian network
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Fig. 1. Bayesian network representing the causal model of Web performance
using two different DNS: the public Google DNS and the DNS of the local
ISP

representing the causal model of our system, presented in
Figure 1. In this section we briefly discuss some of the
dependencies exhibited by this model.

We can observe that the day of the week (dow) and the
time of the day (tod) are two parentless nodes, which is not
surprising, and that the time of the day (tod) influences the RTT
between the probe and the server (inetrttavg), which captures
the peak hour effect.

The observation concerning the two rtt standard deviations
in Section III-C suggested that the internal rtt would have the
stronger impact on the throughput. However, we can observe
a direct dependence between the standard deviation of the
external RTT (inetrttstd) and the throughput (tput) but not
between the standard deviation of the internal RTT (isprttstd)
and the throughput. This observation illustrates the ability of
causal model to exhibit non intuitive dependencies.

On the other hand, we observe that the day of the week
(dow) influences the DNS service used by the clients (dns). As
our observations are made on two days only (a Thursday and
a Sunday), our conclusions are limited. However, looking at
the data, it appears that on Thursday 72% of the connections
use the LDNS service against 28% using the GDNS service,
while on Sunday 93% of the connections use the LDNS service
against 7% using the GDNS service. It would be interesting
to identify the clients using one DNS service and compare
their locations with the ones of the clients using the the other
DNS service to better understand this dependence. The day of
the week may capture the difference in the Internet usage and
the devices used at home and at work. However, for privacy
reasons, the IP addresses of the clients are obfuscated, which
prevents us from investigating this hypothesis.

One of the most interesting dependencies, which motivated
this work, is the one present between the DNS (dns) and the
external RTT (inetrttavg). We could observe in Tstat logs that
the servers accessed by the clients using the LDNS service are
often located inside the autonomous system of the ISP. This
is not the case for the clients using the GDNS service. As
mentioned in the introduction and in [2], clients using the local
DNS service benefit from a redirection to servers closer than
the ones of the clients using a public DNS service. We observe
an average external RTT of 20 ms for the LDNS service users,



TABLE II. Summary of the different metrics for the two DNS: Local DNS (LD) and Google DNS (GD)

Par µ min max σ CoV

LD GD LD GD LD GD LD GD LD GD

isprttavg (ms) 80 61 0 0 19000 15000 470 440 5.9 7.2
isprttstd (ms) 1100 76 0 0 32000 37000 920 1100 8.3 14.0

ispnbhops 1.8 1.9 1 1 3 3 0.53 0.4 0.3 0.2
inetrttavg (ms) 20 48 0.48 11 510 660 20 38 1.0 0.8
inetrttstd (ms) 8.6 6.5 0 0 4700 1400 65 44 7.6 6.8

inetnbhops 8.7 12 2 5 17 21 2.4 2.7 0.3 0.22
rwin0 0.97 0.29 0 0 330 360 12 9.2 12.0 32.0

rwinmin (kB) 35 12 0.004 0.03 65 65 28 14 0.8 1.1
rwinmax (kB) 213 213 18 18 2625 2000 150 138 0.3 0.7
cwinmax (kB) 163 118 7.3 7.8 1625 738 108 72 0.7 0.6
cwinmin (kB) 0.9 1.2 0.001 0.001 1.5 1.5 0.6 0.5 0.7 0.4

retrscore 0.005 0.004 0 0 0.19 0.06 0.01 0.01 1.9 1.8
rto (bool) 0.11 0.11 0 0 1 1 0.32 0.31 2.8 2.9

nbbytes (MB) 29 7 2.1 2.1 3875 1375 150 44 5.3 6.5
tput (Mbps) 3.2 3 0.006 0.007 35 29 2.7 2 0.9 0.7

while the users of the GDNS service experience an average
external RTT of 48 ms (see Table II).

We can also see that congestion window metrics (cwinmin,
cwinmax) have a direct impact on the throughput (tput).
Additionally, the minimum congestion window (cwinmin) has
the DNS (dns) as direct parent. Its average value for clients
using Google DNS is 1.2kB against 0.9kB for users served by
the local DNS, see Table II.

As explained in Section IV-B2, a parameter present in a
causal model represents also the mechanisms captured by such
parameter. This is the case of the cwinmin that also captures
the tuning of the server TCP parameters, such as the initial
congestion window.

Clients using the local DNS often access their objects from
servers that are located inside the ISP network. These servers
could have a configuration different from the servers accessed
by the users of the GDNS. This hypothesis could also explain
the fact that both DNS services result in a similar throughput
despite a different RTT. Two other reasons could be the impact
of losses on the congestion window or the load of the servers
being accessed by the clients.

To capture the server load, we estimate the server pro-
cessing time defined from the time at which a server sends
the acknowledgment of the client HTTP/GET message and
the time at which it sends the first data packet. However, the
server processing time shows an expected value of 43 ms for
the LDNS users against 64 ms for the GDNS users. A higher
processing time for the servers accessed by the GDNS users
suggests that they are more loaded. On the other hand, the
congestion window is impacted by the loss but, as mentioned
in Section III-C, few losses actually happen during the period
of observation of the system and no significant dependence is
found between the loss (retrscore) and the DNS service (dns).

It comes with no surprise that the internal RTT (isprttavg)
is a parent of the throughput. The absence of a dependence
between the time of the day (tod) and the internal RTT can be
explained by the fact that all the observed users are using the
same “internal” path (the path from the users to the probe).

We see that the maximum receiver window advertised by
the client (rwinmax) has the time of the day as one of its parent

(tod). Such fact may be due to the TCP buffer auto tuning
mechanism [12] that adjusts the receiver window according
to the quantity and frequency of data received by the client,
which is influenced by the time of the day.

We can notice the absence of an edge between the DNS
(dns) and the destination IP address (dstip) and the absence of
any adjacency with the object size (nbbbytes). An explanation
of the absence of these edges could be the unequal distribution
of the servers accessed by the users of the LDNS service
when compared to the distribution of the servers accessed
by the users of the GDNS service. A solution to detect
weaker dependences is to increase the acceptance rate in the
independence tests. Increasing the acceptance rate implies a
higher risk in failing to reject weak independences and should
be used with caution. The independence of the object size from
other parameters influencing the throughput is not necessarily
surprising as we consider long connections. The absence of
a dependence between the DNS (dns) and the destination IP
(dstip) of the servers could also be due to a lack of granularity
in the representation of IP address by its AS number. This
last point would not have an important impact on the results
presented in this paper.

The loss parameters (retrscore and rto) and RTT parameters
(inetrttstd and isprttavg) are four of the six direct parents of
the throughput, which is in line with our domain knowledge of
TCP. The additional parents are the congestion window metrics
of the server (cwinmin and cwinmax).

The fact that none of the receiver window metrics (rwin*)
is a direct parents of the throughput (tput) is not surprising.
The study of the client receiver window limitation suggests
that the clients are never limiting the throughput (not showed
here for space reasons).

B. Estimation of the impact of a given parameter in the
difference of performance experienced by two different users

We have seen that the Bayesian network derived in the
previous section reveals a rich set of causal relationships that
indicate how the different parameters impact the throughput.
We will now use this model to answer what-if questions from
the existing data without the need to collect more data or
perform additional experiments.



In this section, as dealing with probabilities, we com-
pare the expected values of the throughput (E[T PUT ] =
∫

fT PUT (tput)tputdtput) instead of its average values (µT PUT ).

1) Distance and delay: In this section we use our causal
model to answer the question: “What is the gain, in terms of
performance, induced by choosing the local DNS service and
being redirected to servers closer to the client?”.

This question can be reformulated as: “What would have
been the performance of a user served by the local DNS
if it would have been redirected to a server whose inetrtt
corresponds to the one the Google DNS service would have
redirected him to ?”.

In our case, this question is equivalent to predict the effect
of an intervention where we modify the external delay (RTT)
experienced by clients served by the LDNS and give this delay
the distribution of the delay experienced by clients served by
the GDNS; the distribution of the rest of the parameters being
kept identical for the LDNS service users.

More formally, if we denote by RTT the inetrttavg param-
eter, by LD the local DNS and by GD the Google DNS, we
want to estimate the following distribution:

f
(

T PUT = tput|DNS = LD, do(RTT ∼ fRTT |do(DNS )(·,GD))
)

.

(6)

We can observe from the causal graph Figure 1 (cf the
explanation of d-separation in Section II-B) that (RTT y

DNS )GDNS
which implies (Rule 2 from Theorem 1):

fRTT |do(DNS )(rtt,GD) = fRTT |DNS (rtt,GD). (7)

From [5, Section 4.2], if we want to predict how an
intervention on X affects Y, where the intervention on X is
enforced with the probability f ∗(X|Z), we obtain:

f (y)| f ∗(x|z) =

∫

DX

∫

DZ

fY |do(X),Z(y, x, z) f ∗(x|z) f (z)dxdz. (8)

On the other hand, we can read from the causal graph in
Figure 1 (cf the explanation of d-separation in Section II-B)
that (RTT y T PUT |DNS , TOD)GRTT

. It follows, from Rule 2
of Theorem 1 that

fT PUT |do(RTT ),TOD,DNS (tput, rtt, tod, dns) =

fT PUT |RTT,TOD,DNS (tput, rtt, tod, dns). (9)

As a consequence we can rewrite Equation (6) as:

f (tput|LD) f (rtt|do(GD)) =
∫

DRTT

∫

DTOD

f (tput|do(rtt), LD, tod) f (tod) f (rtt|do(GD))P(GD) =

∫

DRTT

∫

DTOD

f (tput|rtt, LD, tod) f (tod) f (rtt|GD)P(GD) (10)

using Equation (7) and Equation (9).

Limitations: Figure 2 represents the distribution of the external
RTT for GDNS users and LDNS users. The prediction repre-
sented by the Equation (6) is possible as, roughly, the range of
the external RTT values observed for GDNS users represents
a subset of the values observed for the LDNS users. For
the opposite intervention, where GDNS service users would
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Fig. 2. Histogram of the external RTT for the local DNS (LDNS) and Google
DNS (GDNS)

be given access to servers placed at the locations the LDNS
service users are redirected to, the prediction presents an im-
portant challenge because we do not know f (tput|rtt,GD, tod)
for some of the RTT values for which f (RTT |LDNS ) > 0.
This point is a limitation that is common to many machine
learning problems, where the amount of available information
limits the range of predictions we can make. We are currently
working on the extension of the method to the case where
less information is available. This extension would require a
parametric model to extrapolate the different pdfs out of the
domains where the variables of our system are observed. For
the purpose of this paper we do not need such extrapolations
and manage to obtain the predictions we want directly from
our observations of the system.

Results: The result of the intervention is presented in Figure 3
with cumulative distribution functions (CDFs). The CDF of
the throughput for the LDNS before intervention is plotted
(blue solid line) with the CDF of the throughput for the LDNS
service users after an intervention setting their external delays
distribution to the delay distribution seen by the GDNS users
(red dotted line). We can observe the distribution being clearly
shifted towards lower values of the throughput.

The expected throughput for clients using the local DNS
service prior to intervention is 3.5 Mbps and 3.0 Mbps
after intervention (14% decrease). This result shows the gain
in performance that the redirection to closer CDN servers,
provided by the use of the local DNS service, represents. We
can assign the 14% decrease in the throughput to the higher
values of RTT given to LDNS users in the intervention. These
higher values correspond to the RTT of the GDNS users and
reflect the suboptimal redirections of user demands to server
hosting the requested resources.

Interpretations: The results we obtain cannot be verified in

practice as this manipulation would require moving the servers
hosting the resources that the local DNS users want to access
to locations the Google DNS service redirects his users to
and force the local DNS to redirect its users the way Google
DNS would. In fact, this is precisely the benefit of the causal
approach we adopted: our model offers the possibility to
predict the effect of interventions that are difficult to perform
experimentally. From the prediction of such interventions we
can derive and quantify the impact of the DNS service choice
on user performance (throughput).

The results show that, the local DNS obtains a gain in
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Fig. 3. Evolution of the throughput distribution before and after intervening
on the external delay experienced by Local DNS (LDNS) clients

performance by decreasing the RTT delay experienced by
its users. This difference in the external delay is due to the
non-optimal redirection to CDN servers by the Google DNS
service. The gain was quantified by comparing the original
performance to the one the users of the local DNS would have
experienced if a different strategy was used.

The previous results did not consider the impact of the
servers themselves, captured by the minimum congestion win-
dow in our problem, or other parameters such as the loss
(retrscore) that are different between the two DNS services
and could explain the throughput experienced, in the original
dataset, by the users of the GDNS service that is only 7%
smaller. As we can see from the causal model, Figure 1, the
loss parameters (retrscore and rto), internal delay parame-
ters (isprttavg and isprttstd) or maximum congestion window
(cwinmax) are not influenced by the choice of the DNS service
(dns). Therefore, the next section focuses on the impact of
the minimum congestion window on the performance. Note
that cwinmin is a direct parent of the throughput (tput) and is
influenced by the DNS service choice (dns).

2) Minimum congestion window: As mentioned previously,
the minimum congestion window (cwinmin) is a direct parent
of the throughput (tput), see Figure 1. Its average value is
higher for the clients using the GDNS service than for the
clients using the LDNS service (1.2kB and 0.9kB respectively).
The difference in the expected value of the throughput of
LDNS users (3.5 Mbps) and GDNS users (3.3 Mbps) is 6%,
smaller than the gain for the LDNS users being redirected
to closer server, that is estimated to be 14%. We make the
hypothesis that the minimum congestion window represents
a difference in the configuration of the servers accessed by
the LDNS users and the configuration of the servers accessed
by the GDNS users. To study this hypothesis we estimate
the causal effect of the minimum congestion window on the
throughput, mediated by the choice of the DNS service.

In this section we are interested in estimating the influence
of the DNS service on the throughput via its impact on
the minimum congestion window. It is equivalent to ask the
question: “What would be the throughput for the clients using
the local DNS if the servers they are redirected to would
present the same minimum congestion window as the ones
Google DNS users are redirected to ?”.

For space reasons, and because the method is the same
for the minimum congestion window (cwinmin) as it was for
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Fig. 4. Evolution of the throughput distribution before and after intervening
on the minimum congestion window of servers of the users of the local DNS

the external delay (inetrttavg), we only write down the final
equation corresponding to our problem.

We also observe, from the causal graph of Figure 1 (cf the
explanation of d-separation in Section II-B):

• (CWINMIN y DNS )GDNS

• (CWINMIN y T PUT |DNS , INETRTTS T D)GCWINMIN

For the sake of brevity, we denote cmin the minimum
congestion window (cwinmin in our model) and σrtt the
standard deviation of the external rtt (inetrttstd in our model).
We still use LD when referring to the local DNS and GD for
the Google DNS. Therefore, we obtain the following equation:

f (tput | LD) f (cmin|do(GD)) =
∫

DCMIN

∫

DσRTT

f (tput|do(cmin), LD, ts) f (σrtt) f (cmin|do(GD))P(GD) =

∫

DCMIN

∫

DσRTT

f (tput|cmin, LD, σrtt) f (σrtt) f (cmin|GD)P(GD)

(11)

Results: From Equation (11) we can predict the distribution of
the throughput for the LDNS users after an intervention where
we give to the minimum congestion window the distribution
seen by GDNS users. The CDFs of the pre-intervention
throughput (solid line) and post-intervention throughput (dot-
ted line) are presented in Figure 4 where we can see the
gain in throughput corresponding to the intervention on the
LDNS server minimum congestion windows. The expected
throughput for LDNS service users after the intervention is 4.6
Mbps (against 3.5 Mbps prior to intervention) and represents
a throughput gain superior to 32%. The gain observed for this
intervention is due to the fact that the servers GDNS service
users are redirected to use higher values for their minimum
congestion window.

Remark: The study of the opposite intervention, where GDNS
service users are redirected to servers with a minimum conges-
tion window following the distribution of the minimum con-
gestion window seen by the LDNS service users, in the original
dataset, is more complex. The reasons are the same as the ones
mentioned in Section IV-B1. If we observe the distribution of
the minimum congestion windows for LDNS service users and
GDNS service users, Figure 5, we can notice the absence of
cmin values for GDNS users to estimate f (tput|cmin,GD, σrtt)
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Fig. 5. Histogram of the minimum congestion window for the Local DNS
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for values of cmin where f (cmin|LD) > 0. Such limitation
is common to many machine learning problems, where the
amount of available information limits the range of predictions.

The results obtained for the intervention on the external
RTT were supported by the observations of the system that
showed that the local DNS redirects its users to closer servers
and, by doing so, improves their throughput (relatively to the
situation where the local DNS would not do so). These section
findings verify a hypothesis that was made when looking
both, at the data and the causal graph. It appears that, while
the proximity of the server has an important impact on the
throughput, the configuration of the server hosting the content a
client wants to access also has an important impact. The impact
of a server configuration on its client throughput can be noticed
from two different observations. First, from the data, the GDNS
service users obtain an expected throughput value (3.3 Mbps)
similar to the throughput of the LDNS service users (3.5
Mbps) while experiencing a bigger external delay (48 ms vs 20
ms). Second, by comparing the expected gain in performance
corresponding to the two interventions we studied in our causal
study. On the one hand, we could observe that the users of the
LDNS service are redirected to closer servers, this redirection
was estimated to represent a 14% gain of performance. On the
other hand, the expected gain in performance when we modify
the minimum congestion window of the servers accessed by
the LDNS users was estimated to a 30% additional gain in
performance. Comparing these two gains allows us to explain
the throughput experienced by the GDNS service users and
indicates how to improve the throughput of the users of the
LDNS service.

The impact of the server TCP stack parameter tuning of the
servers is studied in [13]. This work mainly focuses on short
connections but shows the improvements that tuning the initial
congestion window will have on performance. It is important
to notice that, in causal models such as the one presented in
Figure 1, a given node named according to a parameter X
also represents the influence that external factors impacting
only this parameter have on the rest of the system. Having
said so, we can extrapolate our hypothesis on the minimum
congestion to the TCP stack tuning parameters (such as the
additive increase value for each acknowledged packet) and
suppose that the servers that the Google DNS redirects its
clients to have a more aggressive TCP parameterization that
allows the servers to reach faster a higher value of their sending
rate (number of packets sent at each TCP round).

V. Related work

This paper is in line with our two previous works [14],
[15] where causal model inference and atomic predictions
were presented. However, in this study of the causal impact of
DNS on client performance, we do not focus on the technical
details of adapting existing tools to the constraints of the
system (see [14], [15]) and focus on the exploitation of causal
theory. We present a case where more parameters are present
(including categorical data) and use the causal model to explain
non intuitive observations (namely a similar throughput for
connections experiencing a different RTT). Most importantly
we study interesting, while more complex, scenarios based
on counterfactuals that give a very deep understanding of the
causal mechanisms at play.

The two works closest to ours are the WISE system [16]
and the Nano system [17]. The first one also uses the PC
algorithm [8] to infer a graphical causal model from which
interventions are then predicted. In this sense this work is
very similar to ours. However, it differs a lot in the approach
being used and the independence criterion adopted. An im-
portant domain knowledge is required in this approach and
the independence criterion used, based on linear dependencies,
gives very poor results for our problem. In addition, their study
focuses on simpler scenarios of intervention while relying on
more important quantity of data and resources. Our approach
takes full advantage of the causal theory from [5], [6] to
predict interventions and counterfactuals. Counterfactuals are
very interesting questions for understanding the causal role of
the different parameters of a system and, to our knowledge,
scenarios such as the ones presented in Section IV-B have not
been treated so far.

On the other hand, Nano tries to detect network neutrality
violation by assessing the causal direct effect between the
quality of experience of a user from a given ISP and the
type of content being accessed. A performance baseline is
defined based on observations made for different ISPs sharing
similar configurations and then compared to the one observed
for a particular scenario. Again, this approach uses domain
knowledge to define the possible confounders and condition
on these variables to remove spurious associations. Without a
formal causal model this approach presents some risks. One
of the confounders could be a collider in the corresponding
causal graphical model. Conditioning on a common effect in-
duces a dependencies between two independent causes whose
influence tries to be canceled, questioning the obtained results.

Many studies have been made on DNS caching strategies,
see [18] and references therein, and represent a different aspect
of DNS performance study. In [19] the authors also present the
impact of different replicas strategies in CDNs and client usage
of DNS response. These works, while differently tackling
the same question, present complementary results. The main
contribution of this paper resides in the presented methodology
based on the inference and usage of a causal model that allow
us to estimate the causal effect of the DNS on user performance
and goes beyond the simple parameter observations. Several
works have been made concerning the study of DNS service
choice and its impact on client performance [3], [2], [1].
These works mainly rely on active measurement and, while
supporting the results found in this paper, differs greatly in
their approach and objectives.



VI. Concluding remarks

In this paper, we present a new approach to study the effect
of the DNS service on throughput performance. Using a causal
approach, supported by the inference of causal model repre-
sented by a Bayesian graph, we are able to study the causal
effect of a DNS service on the TCP throughput. We compare
the performance of clients using their ISP local DNS service
to the performance of clients using the Google DNS service.
The causal model we obtain allows to unveil dependencies that
would be very difficult to extract otherwise from data such as
RTT, loss frequency, DNS service, throughput, and so on. This
study only focuses on clients downloading files bigger than 2
MB from Akamai servers. However, it appears that the choice
of the DNS server has a strong impact on the location of the
servers to which the clients are redirected to, which impacts
both the distance from clients to servers as well as the servers
configuration. These two facts are captured by the dependence
between the DNS and the RTT as well as the dependence
between the DNS and the server minimum congestion window
in the inferred causal model.

A very interesting property of causal models is their
“stability under intervention”. The model inferred from data
following a given distribution is still valid when we want to
predict the effect of modifying this distribution. We predict,
in Section IV-B, the performance a client using the local
DNS service would have experienced if redirected to servers
the Google DNS service would have redirected it to. In this
way, we can estimate the impact of the local DNS service
redirection strategy on the client performance and quantify the
corresponding performance difference.

When comparing the performance of the local DNS and
the Google DNS users, we can observe that Google DNS users
experience a throughput whose difference with the one of the
local DNS service users cannot simply be explained by the
redirection of Google DNS users to more distant servers. Based
on the causal graph obtained in Section IV-A, we can formulate
the hypothesis that the configurations of such servers allow
the Google DNS users to eventually experience a performance
similar to the one of the local DNS service users. This
hypothesis is verified by our prediction consisting in giving
to servers serving the local DNS users a minimum congestion
window equivalent to the one of the servers serving Google
DNS users. We estimate the gain in throughput corresponding
to this intervention to be 32%. By comparison, the gain in
terms of throughput corresponding to the better redirection of
the local DNS users is estimated to 14%.

Compared to our previous works [14], [15], we demon-
strated the real potential of adopting a causal approach. Coun-
terfactuals are one of the possible way to approach Causality
and this work follows this line. We evaluate the effect of a
parameter on the system performance by predicting the effect
that changing its parent would have with the rest of the system
parameters left unchanged. We manage to answer questions
such as “How would the system behave under the condition C1
if one of his parameter was behaving as it would have under the
condition C2, knowing that these two conditions are exclusive
?”. The ability to predict such scenarios is a very powerful
usage of the inherent mechanisms underlying the development
of Causality. Counterfactuals are relatively complex to study,
explain and even more to predict. However, with the usage of

Bayesian networks as representation of the causal model of
our system, we make the prediction of counterfactuals simpler
to understand and to estimate.

Complex interventions where many parameters are mod-
ified simultaneously require important resources in terms of
data and computational power. The results presented in this
paper represent the first successful attempt to perform such a
study. Based on this work, we are confident in the fact that
the underlying tools and methods can be improved to reduce
the required resources and increase both, the accuracy of such
predictions and the range and complexity of the interventions
that one can consider. In particular, the extension of prediction
of such counterfactuals in cases where the two conditional
probabilities have only partial overlap is a limitation of our
approach and studies are currently being made to fit parametric
models to overcome this issue.
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