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Abstract—Today’s Internet traffic is largely dominated by
major content providers and highly distributed Content Delivery
Networks (CDNs). Internet-scale applications like Facebook and
YouTube are served by large CDNs like Akamai and Google CDN,
which push content as close to end-users as possible to improve
the overall performance of the applications, minimize the effects
of peering point congestion and enhance the user experience. The
load is balanced among multiple servers or caches according to
non-disclosed CDN internal policies. As such, adopting space and
time variant policies, users’ requests are served from different
physical locations at different time. Cache selection and load
balancing policies can have a relevant impact on the traffic routed
by the underlying transport network, as well as on the end-
user experience. In this paper, we analyze the provisioning of
two major Internet applications, namely Facebook and YouTube,
in two datasets collected at major European Internet Service
Providers (ISPs). First, we show how the cache selection per-
formed by Akamai might result in higher transport costs for the
ISP. Second, we present evidence on large-scale outages occurring
in the Facebook traffic distribution. Finally, we characterize the
variation of YouTube cache selection strategies and their impact
on the users’ quality of experience. We argue that it is important
for the ISP to rapidly and automatically detect such events.
Therefore, we present an Anomaly Detection (AD) system for
detecting unexpected cache-selection events and changes in the
traffic delivered by CDNs. The proposed algorithm improves over
traditional AD approaches by analyzing the complete probability
distribution of the monitored features, providing higher visibility
and better detection capabilities.

Keywords—Anomaly Detection, Empirical CDFs, Kullback-
Leibler Divergence, CDNs, YouTube, Facebook, Akamai, Google

I. INTRODUCTION

Content Delivery Networks (CDNs) are a vital part of
current Internet infrastructure. A large share of today’s Internet
traffic is hosted by major CDNs [2], [3], and Cisco forecasts
that 51% of all Internet traffic will be served by CDNs by 2017
[1]. Massively distributed server infrastructures are deployed
to replicate content and make it accessible from different
Internet locations. For example, Akamai operates more than
137.000 servers in more than 85 countries across nearly 1.200
networks1, Google operates tens of data-centers and server
clusters worldwide [4], and other companies such as Microsoft,
Amazon, and Limelight follow similar approaches with highly
distributed infrastructures.

The intrinsic distributed nature of CDNs allows to better
cope with the ever-increasing users’ content demand. Popular
applications and contents are pushed as close as possible

1http://www.akamai.com/html/about/facts figures.html

to the end-users to reduce latency and improve Quality of
Experience (QoE). Load balancing policies are commonly used
to limit servers load, handle internal outages, help during
services migration, etc. Unfortunately, all these control policies
are typically very dynamic and the details of their internal
mechanisms are not publicly available. If on the one hand the
highly distributed server deployment and adaptive behavior
of large CDNs allows them to achieve high availability and
performance, on the other hand they pose important challenges
to the ISPs. The traffic served by CDNs can shift from
one cache location to another in just minutes, causing large
fluctuations on the traffic volume carried through the different
ISP network paths. As a result, the traffic engineering policies
of the ISP might be overruled by the CDN caching selection
policies, potentially resulting in extra transport costs for the
former. Finally, there might be cases in which the strategies in
place result non optimal for end-users’ QoE.

By tracking both the Facebook traffic served by Akamai,
as well as the YouTube traffic served by Google, we show that
these types of anomalous events actually occur in large CDNs.
The datasets we analyze come from both a mobile and a fixed-
line major European ISPs, highly enriching the conducted
study. Based on our analysis, we argue that it is important for
the ISP to rapidly and automatically detect the occurrence of
such events. Even though multiple network Anomaly Detection
(AD) approaches have been proposed in the past, to the best
of our knowledge none of them has specifically addressed
the complex case of CDN traffic. Therefore, we present a
novel network AD approach, specialized on CDN traffic. The
approach builds on our previous work on network AD [7], but
is tailored towards CDN AD.

The reader should note that this paper focuses exclusively
on the detection of the aforementioned anomalous events, and
not on their mitigation. The counteractions the ISP may take
once the proposed system quickly reveals the occurrence of a
CDN-based anomaly is out of the scope of our study.

The remainder of the paper is organized as follows: Sec.
II provides a summary on the characterization and analysis of
CDNs, and a brief overview of the network AD domain. In
Sec. III we describe the proposed AD approach, tailored to
detect the aforementioned unexpected events. Sec. IV presents
a study of the Facebook traffic delivery through Akamai, where
we identify unexpected load balancing events which result in
additional transport costs for the monitored ISP, as well as
service outages. In Sec. V we analyze an anomaly occurring in
the YouTube CDN, which directly impacts the QoE of the end-
users watching YouTube videos. Finally, Sec. VI concludes this
work.



Proceedings of the 2014 26th International Teletraffic Congress (ITC)

978-0-9836283-9-2 c© 2014 ITC

II. RELATED WORK

The study of the Internet traffic and applications delivered
by the top CDNs has gained important momentum in the
last few years [3]–[5]. For example, [3] shows that most
of today’s inter-domain traffic flows directly between large
content providers, CDNs, and the end-users, and that more
than 30% of the inter-domain traffic volume is delivered
by a small number of large CDNs and content providers.
Several studies have focused on CDN architectures and CDN
performance, analyzing features such as CDN size, servers’
location, and latencies to content among others [4], [5]. In
particular, [4] focuses on user-content latency analysis at the
Google CDN, and [5] provides a comprehensive study of the
highly distributed Akamai CDN architecture. Despite the large
literature, none of these studies has considered the problem of
detecting and analyzing anomalies in such CDN scenarios. A
first step in this direction was recently taken by us in [17],
where we studied the problem of anomalies in the YouTube
service. Current paper extends this work by deeper studying
the detected problems in YouTube, as well as targeting the
Facebook case study, and specially using analysis techniques
based on visual inspection and statistical data processing.

There has been a considerable amount of papers on
Anomaly Detection (AD) in network traffic. We refer the
reader to [7], [8] and the references therein for a compre-
hensive overview on the subject. However, to the best of
our knowledge, none of them has specifically addressed the
detection of anomalies in CDNs’ delivered traffic, induced by
unexpected cache selection events. Traditional approaches for
network AD consider individual and independent time series
analysis, processing different traffic descriptors or features
with classical forecasting and outliers analysis methods. Our
approach is intrinsically more powerful, as it considers the
entire distribution of different traffic features across individual
CDN servers, rather than only specific moments of the random
variable distributions (e.g., mean-based, percentile-based, or
variance-based change detection). A few works consider the
temporal distribution of traffic volume-derived features, but
these fail to detect events that do not cause appreciable changes
in the total traffic volume. Our work is close to the approaches
proposed in [9]–[11], where windowed temporal distributions
are computed and compared through the standard Kullback-
Leibler divergence in the quest for anomalous deviations.
Finally, the AD algorithm builds on our previous work on
network AD [7], but specifically targeting the CDN case.

III. STATISTICAL ANOMALY DETECTION

The goal of the AD algorithm is to detect macroscopic
anomalies in the aggregate traffic served by CDNs, meaning
events that involve multiple flows and/or affect multiple users
at the same time. For this purpose, we resort to the tempo-
ral analysis of the entire probability distributions of certain
traffic descriptors or features. In a nutshell, the proposed
statistical non-parametric anomaly detection algorithm works
by comparing the current probability distribution of a feature
f to a set of reference distributions describing its “normal”
behavior. The specific types of features we use in this work
capture both the intrinsic and dynamic CDNs mechanisms
(e.g., number of flows and bytes served by each CDN server
IP address), and end-users experienced performance (e.g., flow

download throughput). Features are computed on a temporal
basis, considering time bins of fixed length, referred to as time
scale. The following sections describe the algorithm.

A. General Overview of the Algorithm

Given a certain traffic feature f (e.g., flow counts), we de-
fine cτi (t) as a generic counter associated to f . The i-th counter
can be associated to the client IP, to the server IP/network of
a CDN, or finally to the i-th (quantized) throughput value.
The symbol τ indicates the size of the time bin, and t is the
time index. For example, cτi (t) could be the number of flows
served from IP i at time bin t of length τ minutes. The length
of τ defines the timescale of the data aggregation, which in
turn defines the timescale of the observable anomalous events.
Given a certain time scale τ , the set of non-zero counters
Cτ (t) = {cτi (t), i = 1, 2, . . . , Nτ (t)} can be used to derive
the empirical distribution of the feature f , denoted by Xτ (t),
where the cardinality Nτ (t) could be for example the number
of IPs serving traffic in the t-th time bin. As the following
analysis can be done independently of the specific selected
time scale, we omit the superscript τ from now on.

The anomaly detection algorithm consists in computing
the degree of similarity between current distribution at time
t, and a set of references distributions computed from past
measurements at times tj < t. To construct this reference
set, we introduce the notion of observation window W(t),
which is simply a sliding window containing past time bins:
W(t) = {tj : a(t) ≤ tj ≤ b(t)}, where a(t) and b(t)
are the oldest and the most recent time bins that can be
considered to evaluate the distribution X(t) at current time
t. The reference time bins set is denoted as I(t) ⊆ W(t),
and corresponds to the set of time bins selected from W(t)
by running the reference set identification algorithm briefly
described in section III-D. This algorithm identifies the set of
past time bins with the most similar anomaly-free distributions
to the current one. Given two distributions X(ti) and X(tj),
of the same feature and timescale, at times ti and tj , we define
L(ti, tj) as a divergence metric accounting for the degree of
similarity between the two of them. The choice of divergence
metric is discussed next. The comparison between the current
distribution X(t) and the associated distributions reference set
{X(tj), tj ∈ I(t)} involves the computation of two compound
metrics based on the divergence L(·, ·). The first one, called
internal dispersion and denoted by Φα(t), is a synthetic indi-
cator derived from the set of divergences computed between
all the pairs of distributions in the reference set. Formally,
{L(ti, tj), ti, tj ∈ I(t), ti 6= tj} → Φα(t). We chose Φα(t) to
be the α-percentile of this set of divergence measures. The
parameter α must be tuned to adjust the sensitivity of the
detection algorithm: it defines the maximum distribution devi-
ation that can be accounted to normal statistical fluctuations,
therefore an acceptance region for the AD test. Similarly, we
define the external dispersion Γ(t) as a synthetic indicator
extracted from the set of divergences between the current
distribution X(t) and those in the reference set. Formally,
{L(ti, t), ti ∈ I(t)} → Γ(t). We chose Γ(t) as the mean.

The detection scheme is based on the comparison between
the internal and external metrics. If Γ(t) ≤ Φα(t) then
the observation X(t) is marked as normal. In this case, the
boundaries of the observation window are updated by one time
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bin shift. Conversely, the condition Γ(t) > Φα(t) triggers an
alarm, and X(t) is marked as abnormal. The corresponding
time bin t is then included in the set of anomalous time
bins M(t), and is excluded from all future reference sets. In
this case only the upper bound of the observation window
is shifted, i.e. a(t + 1) = a(t) and b(t + 1) = b(t) + 1. Such
update rule is meant to prevent the reference set from shrinking
in case of persistent anomalies. In fact, only the time bins in
W(t) \M(t) are considered for the reference set.

B. Divergence Metric for Anomaly Detection

A possible distance metric between two distributions is the
Kullback-Leibler (KL) divergence. Let p and q be two dis-
crete probability distributions defined over a common discrete
probability space Ω. The KL divergence is defined as [13]:

D(p||q) = E

[

log

(

p(ω)

q(ω)

)]

=
∑

ω∈Ω

p(ω) log

(

p(ω)

q(ω)

)

(1)

where the expectation is taken on p(ω), and following con-
tinuity arguments, 0 log 0

q
= 0 and p log p

0
= ∞. The KL

divergence provides a non-negative measure of the statistical
divergence between p and q. It is zero ↔ p = q, and for each
ω ∈ Ω it weights the discrepancies between p and q by p(ω).
The KL divergence has several optimality proprieties that make
it ideal for representing the difference between distributions
[13]. However, it can not be actually considered as a distance
metric, since it is not symmetric and does not satisfy the
triangular inequality. In particular, the lack of symmetry can be
inconvenient in certain scenarios, particularly in the presence
of events that take very low probability values in only one
of the two tested distributions. Therefore, we adopted a more
elaborated divergence metric, symmetric by construction:

L(p, q) =
1

2

(

D(p||q)

Hp

+
D(q||p)

Hq

)

(2)

where D(·||·) is defined according to eq. (1), and Hp and Hq

are the entropy of p and q respectively. The properties of this
metric are extensively discussed in [7].

C. Deriving Empirical Distributions

The feature distributions p, q in eq. (2) are unknown, hence
they must be empirically obtained from the data samples. Some
issues may arise in the estimation of the discrete probability
distributions. Indeed, when the traffic distribution is computed
for example from per IP counters, an obvious problem is the
cardinality of the probability space Ω. A simple solution in this
case is to consider per sub-network counters. Instead, when the
considered traffic feature is the distribution of the throughput or
the RTT across the users, then the empirical distributions found
in real datasets are often heavy-tailed and span over ranges
of a few orders of magnitude. In many cases, the sample size
N(t) is smaller than the range of spanned values. The standard
approach in this case is to apply binning, i.e. to quantize
the spanning range of the variable into a reduced number
of bins, and to take the frequency of samples in each bin
as the estimate of the distribution. The choice of the binning
is critical because it affects the accuracy of the estimate, and
ultimately the sensitivity of the detector. When this is the case,
we adopt a non-uniform lin-log binning where the lower range

is binned linearly and the upper one logarithmically, and the
edges are automatically adapted so as to obtain a fixed number
of bins. In some other cases we use our domain knowledge in
defining meaningful bin edges. For example, in the case of the
video download rate, we define bin edges which correspond
to changes in the perceived user experience [16].

D. Identification of the Reference Set

The design of the algorithm considers the identification of
a set of distributions, which is used as the normality reference
for the detection step. The identification of a suitable reference
assumes a paramount relevance in the context of CDNs’ traffic
AD, due to the highly dynamic way CDNs host and serve the
contents. Most of the AD work considers training once-and-
for-ever and tests the current sample against the most recent
ones. In the context of CDN AD, a reference based only on
the most recent samples would not be able to take into account
the steep variation in the total traffic counters in the morning
and in the late evening, resulting in a series of false alarms.
From the exploration of the real traffic traces we found that
the traffic served by the analyzed CDNs (Akamai and Google
CDN) share some common structural characteristics which
must be considered for the choice of the observation window
and reference set. For example (see Fig. 3 on Akamai traffic),
the traffic is non-stationary due to time-of-day variations, with
steep variations occurring at certain specific hours like peak-
utilization time, and with very strong 24-hours seasonality. We
remark that such variations do not only apply to the flow
counts and active server IPs, but also to the distribution of
many other features such as volume, minimum RTT to the
servers, download throughput, etc.

The heuristic used for the construction of the reference
set follows a progressive refinement approach, where the
mentioned structural characteristics are used at each step for
reducing the set of candidate references in the observation
window W(t). At each step, the set of candidate references
is incrementally reduced by filtering the elements according
to three different criteria. Given a new sample at time t of
size N(t), in the first step the algorithm picks the subset
I0(t) of past time bins with samples of similar size, formally
I0(t) = {j|N(t) − s ≤ N(j) < N(t) + s}. Such size-based
criterion avoids comparing distributions with very different
statistical significance, as the sample size can vary across two
orders of magnitude during the 24 hours (see for example Fig.
1(a)). In a second refinement step, the subset of elements in
I0(t) with the smallest divergence from current observation
are picked. In this way, samples related to different time of
day and/or type of day (working day vs. weekends/festivities)
are filtered out. The residual set I1(t) might still contain
residual heterogeneous samples. To eliminate these samples,
in the third step we resort to an heuristic in which we apply
a graph-based clustering procedure to identify the dominant
subset with the lowest inter-samples divergence: samples are
mapped to nodes, with edges weighted proportionally to the
KL divergence among them. The algorithm divides the nodes
in two clusters so as to minimize the intra-cluster weights,
and finally the larger cluster is picked as the final reference
set I(t).

The overall procedure is designed to minimize the inter-
samples divergence within the reference set, so as to preserve
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good sensitivity of the detection process. We stress the fact that
past observations (samples) which were previously marked as
“anomalous” by the detector are excluded from the reference
identification procedure; in other words, only samples marked
as “normal” are taken as candidates. This introduces a feedback
loop, as the output of the detector for past samples impacts the
identification of the reference set, and therefore influences the
future decisions.

Our experience shows that the proposed heuristic copes
well with the time variability of both the distribution shape
and the sample size. It does so by embedding the intrinsic
pseudo-cyclical structure of the real traffic process into the
reference set, resulting in a minimum set of past observations
with the lowest divergence with respect to the current sample.
In a nutshell, it leverages pseudo-seasonality to compensate
for non-stationarity. As an example, Fig. 1 shows the typical
output of the reference identification algorithm. In this specific
example, we consider the distribution of the average download
rate across the users watching YouTube videos during 11
consecutive days (see Sec. V for the details on this dataset).
Fig. 1(a) explains the ideas behind the first step of the reference
set identification procedure, where distributions are selected
based on the number of samples – flows in this case – used
to derive them (absolute values are normalized for privacy
issues). As we shall see in Sec. V, the observed variations
on the number of flows influences the overall behavior of the
detection algorithm.

Fig. 1(b) depicts the output of the reference set identifica-
tion algorithm. The cyan CDF represents the sample under
test. The gray CDFs correspond to those samples in the
observation window which are discarded by the identification
procedure. The red CDFs are the samples in the observation
window which are discarded for being previously marked as
anomalous. Finally, the orange CDFs are those selected as
reference. Note that out of all the possible candidate distri-
butions, the algorithm selects the ones with lowest divergence
to the current one, i.e., the orange CDFs. We remark that the
proposed scheme is robust to irregularities in the pseudo-cycles
– as introduced for example by non-weekends festivities, or
solar/legal time shifts – since it does not rely on any external
label information (e.g. calendar day or absolute time). For
further details on the reference set identification, the interested
reader is referred to [7].

IV. ANOMALIES IN AKAMAI AND FACEBOOK

In our first case study, we analyze the well known and
highly popular social network Facebook. Due to its high
number of users and volume of the served traffic, Facebook
content is delivered through a sophisticated and highly dis-
tributed content delivery infrastructure. The big majority of
the Facebook content is hosted by the Akamai CDN. Parts of
the content are hosted under Facebooks own AS, split between
its headquarters in the USA and Ireland. Finally, an important
share of the content is served by the ISPs, which maintain
large transparent caches, and may additionally host Akamai
servers inside their premises.

The dataset corresponds to one month of HTTP flow traces
collected at the 3G mobile network of a major European ISP
by mid 2013. Flows are captured at the Gn interface and
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Figure 1. (a) Total number of flows related to download average rate,
and number of users generating the traffic. (b) Output of the reference set
identification algorithm.

imported and analyzed with the stream data warehouse DB-
Stream [18]. Facebook flows are filtered using the HTTPTag
traffic classification tool [12]. To preserve user privacy, any
user related data (e.g., IMSI, MSISDN) are removed on-the-
fly, and payload content beyond HTTP headers is discarded.
Using the MaxMIND ASes databases2, the ASes serving
the corresponding flows are included in the dataset. In the
following analysis, dates are not disclosed and flow/volume
counts are normalized to preserve business privacy.

Let us first show with a simple example the intrinsic
multi-caches and daily load balancing policies employed in
the delivery of Facebook traffic flows. Fig. 2 shows the per-
hour distribution (CCDF) of the RTT of the flows carrying
Facebook content for a complete day. For each Facebook
flow, the RTT is passively computed as the delay between
the SYN and the SYNACK packets during the TCP 3-way
handshake. Given that the probe is at the Gn interface of a
3G mobile network, the user-side part of the RTT is excluded.
For further details about the metering methodology we refer
the reader to [15]. The Fig. reveals the typical daily patterns
of the RTT distributions. The occurrence of “bumps” or knees
in the distribution indicates the presence of different caches,
located at different propagation distances from the vantage
point. In addition, there is a clear change on the selected
servers providing the content during the first and the second
half of the day, revealing the existence of a time-of-day based
load balancing policy.

2MaxMIND databases, http://www.maxmind.com.
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Figure 2. Daily RTT CCDFs for Facebook flows. There is a clear shift on
the selected servers between the first and the second half of the day.

Let us move now to the core of the analysis. To show some
of the aforementioned unexpected traffic changes caused by
the selection of caches serving Facebook, Fig. 3 depicts the
4-days evolution (day 21 - day 24) of the number of flows
and the corresponding number of unique server IPs delivering
Facebook content, aggregated in 5-min time bins and split by
hosting organization/AS. We include the top-4 organizations
in terms of delivered volume, which correspond to Akamai,
Facebook AS, the Local Operator (LO), and the most important
Neighbor Operator (NO1). The plot also includes another
Neighboring Operator we refer to as NO2, which plays a key
role in this analysis. The flow share across the 5 organizations
remains practically constant during the day. There is a clear
daily pattern in the number of active IPs, and it is worth noting
how Akamai systematically doubles the number of deployed
servers during the peak hours (21:00-23:00), flagged by the
dotted rectangles. As expected, Akamai and Facebook AS
serve the largest share of Facebook flows. Akamai employs
many more servers, and as shown in Fig. 4, it hosts the largest
flows corresponding to the static Facebook contents, showing
the role breakdown through the different organizations.

Fig. 3 additionally shows the occurrence of four anomalies,
identified as A, B, C and D, which break the normal traffic
pattern. We clarify to the reader that these events are assessed
as “unexpected” or anomalous with respect to the behavior
observed in our traces, i.e., from the perspective of the ISP
hosting the vantage point. In this study we do not have
enough data (e.g., from multiple vantage points) to find the
root causes of such behaviors, which might be the result of
more complex and planned activities by the involved ASes.
Anomalies A and B have similar characteristics: even if the
number of IPs steeply increases, the number of flows and
traffic volume served by Akamai abruptly decreases. The
number of flows served from NO1 and NO2 abruptly increase,
and so does the number of active IPs in both ASes. This
strongly indicates that flows served by Akamai under normal
operation (i.e., the majority of the time) are now served by
neighboring ISPs. Akamai actually deploys servers inside the
ISPs [6], which also explains the synchronized shift of flows.
Fig. 4 depicts a 12 hours zoom around the events C and D.
During the event C, the Akamai drop is again compensated
by NO1 and NO2 in terms of volume. However, unlike NO2,
there is a limited increase in the number of flows served from
NO1, suggesting that the latter takes over the largest flows
from Akamai. Event D differs from the previous ones since
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it does not involve Akamai, and it is characterized by a swap
in the number of flows between NO1 and NO2.

We acknowledge that we do not know the ground truth
or root causes causing the aforementioned unexpected cache
selection events. We did not observe any abrupt variation in
the total traffic, throughput, average RTT to the active IPs,
nor in the number of erroneous HTTP responses during the
events A-D, suggesting that the cache selection did not impact
the end-user QoE. However, we argue that these fast and
significant traffic shifts might be highly costly for the LO.
Indeed, we verified via traceroutes that Akamai, NO1, and
NO2 are neighbors to LO. As reported in the Internet AS-
level topology archive3, the relation between LO and Akamai is
peer-to-peer (P2P), whereas the relation between LO and both
NO1 and NO2 is customer-to-provider (C2P). In a nutshell,
the P2P relation results in no transit costs for the LO for
the flows served by Akamai, whereas the C2P relation might
represent additional transit costs for the LO for flows coming
from NO1 and NO2. For this reason, such events are worth to
be automatically detected and analyzed.

A. Temporal Similarities in Facebook and Akamai Traffic

To get further insights on how to detect the aforementioned
anomalies using our statistical approach, we investigate the
temporal evolution of the probability distributions of the flow
counts across IPs serving the Facebook content. The flow
counts are computed for each observed server IP, considering
different time-scales to enable multi-scale analysis (e.g., from
1’ to 60’). The distribution of the flow counts across the server
IPs is computed after each time bin. Finally, by comparing the
distributions referring to different time intervals through the

3Internet AS-level Topology Archive, http://irl.cs.ucla.edu/topology/.
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Figure 5. TSP of flow count distributions at 1h time scale, over 28 days.

modified K-L divergence (2), we get a direct insight on how
the flow load balancing is performed among the IPs of the
different organizations. To visualize and quantify the degree
of (dis)similarity of a large number of distributions over days
and even weeks, we use an ad-hoc graphical tool proposed
in [7], referred to as Temporal Similarity Plot (TSP). The
TSP allows pointing out the presence of temporal patterns and
(ir)regularities in distribution time series, by simple graphical
inspection. The TSP is a symmetrical checker-board heat-map
like plot, where each point {i, j} represents the degree of
similarity between the distributions at time bins ti and tj .

Fig. 5 gives an example of a TSP for the distributions of all
the Facebook flows across all the server IPs providing Face-
book content, over the complete span of the dataset. The blue
palette represents low similarity values, while reddish colors
correspond to high similarity values. The TSP is symmetric
around the 45◦ diagonal, thus the plot can be read either by
column or by row. For a generic value of the ordinate at tj , the
points on the left (right) of the diagonal represent the degree
of similarity between the past (future) distributions w.r.t. the
reference distribution at tj .

The TSP in Fig. 5 refers to the distributions on a time-scale
of 1 hour. Note the regular “tile-wise” texture within a period
of 24 hours, due to the daily cycle. The lighter zones corre-
spond to the day-time periods, whereas the dark blue zones
correspond to the night-time periods when the traffic load is
low. The low similarity at night (02:00-05:00) is caused by the
low number of flows, inducing larger statistical fluctuations.
This pattern repeats almost identical for a few days, forming
multi-days macro-blocks around the main diagonal, of size
ranging from 2 up to 6 days. Besides the basic tile-texture, the
analysis of the entire observation period reveals the presence
of a more complex temporal strategy in the (re)usage of the
IP address space. Indeed, it discloses a reusage of (almost)
the same address range between days 4-10 and 14-15, and
between days 11-13 and 16-17. Finally, we observe a sharp
discontinuity on days 19-20.

To better understand these behaviors, we separately plot
the two main sources of Facebook flows, namely Akamai and
the Facebook AS. Comparing Figs. 6(a) and 6(b) against Fig.
5 shows a very different allocation policy used by the two
organizations. Akamai uses the same IPs for 4 to 7 days
(see multi-day blocks around the main diagonal). When it
changes the IPs the shift is not complete, as we can observe

(a) Akamai (b) Facebook AS

Figure 6. TSP of flow counts distributions at 1h time-scale.

(a) Akamai (b) NO1 (c) Facebook AS

Figure 7. TSP of flow counts distributions at 5’ time-scale.

the macro-blocks slowly fading out over time. This suggests
a rotation policy of the address space of Akamai on a time-
scale longer than a month. However, we cannot prove this
conjecture because of the limited duration of the analyzed
dataset. Facebook AS does not reveal such a clear temporal
allocation policy. It alternates periods of high stability (e.g.
between days 4-10) with highly dynamic periods (e.g., from
day 19 onward). Note that Facebook AS is responsible for
the IP reuse between days 4-10 and 14-15, and between days
11-13 and 16-17, and for the abrupt change on days 19-20,
both already identified in Fig. 5. Finally, NO1 always uses
two distinct address sets during the night and the day periods,
as depicted in Fig. 7(b).

We can use the TSPs to identify, by graphical inspection,
the aforementioned anomalies in the traffic distributions. In-
deed, a transient anomalous event appears in the TSP as a full
blue cross centered on the main diagonal, at the time of the
event. Fig. 7 shows the TSPs of the flow counts distributions
between days 21 and 24 at a 5 minutes time-scale (i.e., the
same period and aggregation depicted in Fig. 3), for Akamai,
NO1, and Facebook AS respectively. The events A, B, and
C are clearly visible in the TSPs of Akamai and NO1, and
are totally absent from the Facebook AS TSP. These events
are also clearly visible in the TSP of NO2 (not reported for
space limitations), and are in total accordance with the analysis
for the flow counts time-series in Figs. 3 and 4. Regarding
the event D, it is observable in all the TSPs, even though it
is completely invisible in the time-series of flow counts and
volume of Facebook AS in Fig. 4. Furthermore, Figs. 7(b)
and 7(a) pinpoint the presence of two more anomalous events
in the Akamai and NO1 traffic, namely the events E and F ,
that are completely invisible in the flow and volume plots. This
additionally justifies the usage of probability distribution based
approaches for detecting such abnormal events.

B. Detecting Service Outages in Facebook

To conclude with the analysis of anomalies in Facebook
traffic, we devote the last part of this section to the detection
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Figure 8. Detection of Facebook outages in Septmeber 2013. (up) Facebook
downlink traffic volume per AS and (down) HTTP server error message (e.g.
5XX) counts.

of outages in the Facebook service. Such outages are not
directly linked to the cache selection policies employed by
the CDNs serving the content, but are still related to them,
as they may occur at different ASes hosting the service. Fig.
8 depicts a very interesting event detected by our approach
in the Facebook traffic served by Akamai, which we claim
corresponds to a large outage in Akamai servers during a time
frame of about 2 hours in September 2013. The total volume
served by Akamai, Facebook AS and LO abruptly drops during
this outage, being Akamai the organization showing the highest
change. Different from the events previously analyzed in Figs.
3 and 4, no other organization takes over the dropped traffic,
suggesting the occurrence of an outage.

To further understand the root causes of the abrupt drop,
Fig. 8 additionally plots the time series of the count of HTTP
server error messages (i.e., 5XX HTTP answers) corresponding
to the Facebook HTTP flows served by the aforementioned
ASes. The high increase in the counts for Akamai is impres-
sive, meaning that during the volume drop, the HTTP web
traffic hosted by Akamai was not available for many of users.
The increase of the 5XX messages continues for about half
an hour after the apparent recovery, flagging some transient
effects which might be linked to the re-start of some servers.
Interestingly, there are no noticeable variations in the counts
for the other ASes, suggesting that the outage is only part of the
Akamai CDN and is not related to the Facebook service itself.
As we said before, we do not have any ground truth flagging
this outage in the Akamai CDN. However, we also detected an
outage of very similar characteristics about one month later,
for which we have the ground truth of its occurrence, disclosed
in the international press4.

Fig. 9 depicts this new outage occurring in October 2013.
The drop in the served volume is not as marked as before, and
in this case, the increase in the HTTP error message counts
occurs for the servers under Facebook AS and not Akamai.
However, the characteristics are very similar: a drop in the
overall served volume with no other organization taking over,

4http://www.theguardian.com/technology/2013/oct/21/facebook-problems-
status-updates
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Figure 9. Detection of Facebook outages in October 2013. (up) Facebook
downlink traffic volume per AS and (down) HTTP server error message (e.g.
5XX) counts.

as well as a marked increase in the HTTP error messages
counts. According to the press release, this Facebook outage
was caused by maintenance issues. As a final statement on the
importance of rapidly detecting and diagnosing these types of
events we cite directly the press release, which claims that the
flagged outage impacted millions of Facebook users on more
than 3.000 domains. Interestingly for IPSs, the experts behind
the press release advise to check the status of large services
like Facebook before actually starting a troubleshooting phase
on their internal systems.

V. USER EXPERIENCE ANOMALIES IN YOUTUBE

CDN cache selection policies may also have a strong
impact on the service quality as experienced by the end users.
This is not only a main issue for the end-users, but also for the
ISP providing the Internet access to the contents, as customers
will in most cases directly blame the ISP for the bad QoE, even
if the origin of the problems is located outside its boundaries.

This section reports a real case in which an unexpected
cache selection and load balancing policy employed by Google
results in an important drop on the average download through-
put for the end-users watching YouTube videos. Indeed, con-
versations with the ISP confirmed that the effect was indeed
negatively perceived by the customers, which triggered a
complete Root Cause Analysis (RCA) procedure to identify
the origins of the problem. As the issue was caused by an
unexpected caches selection done by Google, the ISP internal
RCA did not identify any problems inside its boundaries. As
we said in the last part of previous section, this standard pro-
cedure followed by operators should always be complemented
with a verification of the status of the services being accessed
by the users, which in many cases are the root of the problems.

The dataset corresponds to one month of HTTP video
streaming flows collected at the fixed-line network of a major
European ISP, from April the 15th till May the 14th, 2013. The
monitored link aggregates about 30.000 residential customers
accessing to the Internet either using ADSL or Fiber-To-The-
Home (FTTH) technologies. Flows are captured using the
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Figure 10. Traffic volume distributions per CDN /24 subnets.

Tstat passive monitoring system [14]. Using Tstat filtering
and classification modules, we only keep those flows carrying
YouTube videos. These flows are finally imported and analyzed
with DBStream.

As reported by the ISP operations team, the anomaly occurs
on Wednesday the 8th of May. Fig. 10(a) shows the TSP of
the video volume served by the different IPs in the dataset,
aggregated in /24 subnetworks, and using a time-scale of 1
hour. Similar to the Akamai case, we can appreciate a marked
daily periodicity behavior in the TSP. Specifically, there are
two subnet sets periodically re-used in the first and second
half of the day. The TSP clearly reveals that a different subnet
set is used during the second half of the day from the 8th
of May on, revealing a different cache selection policy. This
change is also visible in the CDFs of the per subnet volume
depicted in Fig. 10(b). Indeed, we can see that the same set
of subnets is used between 00:00 and 15:00 before and after
the anomaly, whereas the set used between 15:00 and 00:00
changes after the 8th, when the anomaly occurs.

Despite this detected change in the cache selection policy
employed by Google, such a modification does not justify by
itself the QoE degradation reported by the ISP. To further
investigate this issue, we analyze the distributions of the
average video flows download rate. Fig. 11(a) depicts the
temporal trend of several percentiles of the average video
flows download rate per user, starting one day before the
anomaly occurs and covering five consecutive days after it.
The lowest percentiles (i.e., 5% and 25%) show a constant
drop on the average download flow rate during peak hours
(between 21:00 and 23:00), even before the anomaly actually
occurs. However, starting on Wednesday, even the 50% and
75% percentiles present an important drop at peak hours,
explaining the flagged QoE degradations. Fig. 11(b) analyzes
the distribution of the average video flows download rate, in
the hours before and during the anomaly. Interestingly, the only
distributions exhibiting a marked change before and during the
anomaly are those corresponding to the peak hours (21:00-
23:00), which are those reported in Fig. 11(b). Indeed, if we
focus for example on the 70% percentile, we observe a drastic
reduction on the video flows download rate, going from about
780 kbps to 470 kbps. Even if this reduction might not look
significant a priori, we know from previous QoE studies in
YouTube [16] that it is sufficient to drop the perceived quality
below the level of acceptance.

Fig. 12 permits to better explain the QoE degradation.
The Fig. reports the overall QoE and the acceptance rate as
declared by users watching YouTube videos during a field trial
test conducted and reported in [16], both as a function of
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Figure 11. Distribution of the video flows average download rate across
the users: (a) trend over time for several percentiles, (b) CDFs at peak hours
(21:00-23:00), before and during the reported anomaly.

the average downlink rate. During this one-month long field
trial test, about 40 users regularly reported their experience on
surfing their preferred YouTube videos under changing net-
work conditions, artificially modified through traffic shaping
at the core of the network. Both curves correspond to a best-
case scenario, in which only 360p videos were watched by
the users. In the evaluated anomalous situation, not only 360p
videos were consumed by the users, but most probably videos
with higher resolutions (e.g., 1080p HD), and thus we expect
that the impacts on the user experience were even more severe
than what we report in here.

Fig. 12(a) shows the overall QoE as a function of the
average downlink rate, using a 5-points MOS scale, where 1
corresponds to very bad QoE and 5 to optimal (note: in the
practice, the dynamic range of QoE values varies between 1.5
and 4.5 MOS). The Fig. clearly shows that the overall QoE
drops from a MOS score close to 4 at 780 kbps to a MOS
score below 3 at 470 kbps. A MOS score of 4 corresponds to
good QoE, whereas a MOS score below 3 already represents
poor quality. Fig. 12(b) additionally shows how the acceptance
rate (i.e., the proportion of customers accepting to use the
YouTube service at the corresponding downlink rate value)
drops from about 90% in normal conditions to nearly 60%
during the anomaly, providing more evidence on the impacts
of such downlink rate drop on the users. To conclude the
analysis, we report in Fig. 13 the output of the proposed AD
system. Fig. 13(a) considers the per /24 subnet served volume
as the monitored feature. It shows how Φα(t) (with α = 95-th
percentile) adapts over time to follow the natural traffic daily
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Figure 12. YouTube overall QoE and acceptability in terms of average
downlink rate. The curves correspond to a best-case scenario, in which only
360p videos were considered.

changes. The red markers indicate when the condition Γ(t) <
Φα(t) is violated, triggering an anomaly. From Wednesday
the 8th of May onward the algorithm systematically rises
alarms from 15:00 to 00:00, which correspond to the discussed
change in the caching policy. Fig. 13(b) reports the same
information for the average video flows download rate. In this
case, the AD system detects some anomalies only between
peak hours (21:00-23:00) from the 8th onward, coherently
with the observations drawn from Fig. 11. Interestingly, it
can be noticed that even during peak hours, the anomalies
are not detected on Saturday the 11th, whereas they are back
on Sunday. This behavior is easily explained by the lower
traffic served during the peak hours on Saturday, as shown in
Fig. 1(a). Indeed, the percentiles depicted in Fig. 11(a) do not
reveal a clear deviation on Saturday average download rates.
Comparing the changes on the volume distribution against
those on the video flows download rate distribution, we observe
that the cache selection policy used by Google resulted in a
QoE degradation only during the peak hours on the high load
days. This suggests that the servers of the selected caches were
not correctly dimensioned to handle traffic load peaks.

VI. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have shown that the caching selection
policies employed by major CDNs might have an important
impact on both the ISP carrying the traffic and the end-
customers. Our study considered traffic from two large and
very different datasets collected in different countries, showing
that these events are not bound to a particular location or type
of network. We argue that it is important for the ISP to rapidly
and automatically detect the occurrence of such events, and
therefore presented a network AD system for CDNs’ traffic.
By applying this algorithm to the traffic datasets, we were
able to identify different classes of anomalies in Akamai and
Google CDN. In this paper we have not fully evaluated the
limitations of our AD system to cope with the high complexity
of the considered scenarios, which is part of our ongoing
work. The algorithm is currently running in the wild in two
different operational networks, with the aim of detecting and
characterizing the types of anomalies typically observed in
CDN-provisioned services.
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