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Lot of literature for a study on to choose from

…But

Short paper @ IMC’22
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IMC22 paper : TLDR (1/2)

Flowpic input representation Data augmentation

Few-shot learning Self-supervision 
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Supervised
training

Supervised
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[1] A Simple Framework for Contrastive Learning of Visual Representations, ICML20
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IMC22 paper : TLDR (2/2)

[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19
[2] A Simple Framework for Contrastive Learning of Visual Representations, ICML20

Evaluation settings
• UCDAVIS-19 dataset [1]

5 QUIC-based Google services

• Benchmarking flowpic computed from 15sec of 
traffic at different resolutions
(32x32 à 1500x1500)

• 6 augmentations
3 image-based, 3 time series-based

• 100 samples per class augmented 10 times

• Contrastive learning via SimCLR [2] and finetune 
with 10 labeled samples



8

IMC22 paper : TLDR (2/2)

[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19
[2] A Simple Framework for Contrastive Learning of Visual Representations, ICML20

Takeaways

• Time series transformations are 
superior wrt image transformations

• 100 labeled samples and a 32x32 
flowpic are enough for good accuracy

• SimCLR performance almost on par
with supervised training

Evaluation settings
• UCDAVIS-19 dataset [1]

5 QUIC-based Google services

• Benchmarking flowpic computed from 15sec of 
traffic at different resolutions
(32x32 à 1500x1500)

• 6 augmentations
3 image-based, 3 time series-based

• 100 samples per class augmented 10 times

• Contrastive learning via SimCLR [2] and finetune 
with 10 labeled samples



Our goals
ML reference baseline
How complex is the problem? Do we really need DL?
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G1 Reproduce IMC22 augmentations benchmark in supervised setting
NEW

G0 NEW

G2 Reproduce IMC22 contrastive learning benchmark
NEW

G3 Replicate G1 with 3 alternative datasets NEW

G4 Treat our paper a “software deliverable” NEW
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Datasets
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Name Partition Filter Classes
Flows Pkts

All Min 
(per class)

Max
(per class)

r
(class imbal.)

Mean
(per flow)

UCDAVIS-19 [1]
Pretraining

none 5
6,439 592 1,915 3.2 6,653

Human 83 15 20 1.3 7,666
Script 150 30 30 1.0 7.131

MIRAGE-19 [2] n.a.
none

20
122,007 1,986 11,737 5.9 23

>10pkts 64,172 1,013 7,505 7.4 17

MIRAGE-22 [2] n.a.
none

9
59,071 2,252 18,882 8.4 3,068

>10pkts 26,773 970 4,437 4.6 6,598
>1,000pkts 4,569 190 2,220 11.7 38,321

UTMOBILENET-21 [4] 4-into-1
none 17 34,378 159 5,591 35.2 664

>10pkts 14 9,460 130 2,246 19.2 2,366
[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19
[2] The MIRAGE project: https://traffic.comics.unina.it/mirage/
[3] UTMobileNetTraffic2021: A Labeled Public Network Traffic Dataset, IEEE Networking letters

r = !"# (%&'() *+, -&")))
!/0 (%&'() *+, -&")))

Class imbalance

https://traffic.comics.unina.it/mirage/


Datasets

12

Name Partition Filter Classes
Flows Pkts

All Min 
(per class)

Max
(per class)

r
(class imbal.)

Mean
(per flow)

UCDAVIS-19 [1]
Pretraining

none 5
6,439 592 1,915 3.2 6,653

Human 83 15 20 1.3 7,666
Script 150 30 30 1.0 7.131

MIRAGE-19 [2] n.a.
none

20
122,007 1,986 11,737 5.9 23

>10pkts 64,172 1,013 7,505 7.4 17

MIRAGE-22 [2] n.a.
none

9
59,071 2,252 18,882 8.4 3,068

>10pkts 26,773 970 4,437 4.6 6,598
>1,000pkts 4,569 190 2,220 11.7 38,321

UTMOBILENET-21 [4] 4-into-1
none 17 34,378 159 5,591 35.2 664

>10pkts 14 9,460 130 2,246 19.2 2,366
[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19
[2] The MIRAGE project: https://traffic.comics.unina.it/mirage/
[3] UTMobileNetTraffic2021: A Labeled Public Network Traffic Dataset, IEEE Networking letters

Very long flows
Google Doc
Google Music
Google Drive
Google Search
YouTube

r = !"# (%&'() *+, -&")))
!/0 (%&'() *+, -&")))

Class imbalance

https://traffic.comics.unina.it/mirage/
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Large training set

Small testing sets
Light
imbalance

r = !"# (%&'() *+, -&")))
!/0 (%&'() *+, -&")))

Class imbalance

https://traffic.comics.unina.it/mirage/
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Variety of 
Android apps

Only video
Meeting apps

In between
MIRAGE
datasets

Many flows            …but short

r = !"# (%&'() *+, -&")))
!/0 (%&'() *+, -&")))

Class imbalance

https://traffic.comics.unina.it/mirage/
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Data
curation

Data
curation

Data
curation

Larger
imbalance

r = !"# (%&'() *+, -&")))
!/0 (%&'() *+, -&")))

Class imbalance

https://traffic.comics.unina.it/mirage/
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Flowpics: 

Example of a               flow

Get pkts time series1
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Example of a               flow

Flowpics: 

2 Pkts size histogramsGet pkts time series1
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First 15s

Window size of 15s/32 = 468ms
For 32x32 resolution

window 1

window 2

window 3

Example of a               flow

Flowpics: 

2 Pkts size histogramsGet pkts time series1
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First 15s

Window size of 15s/32 = 468ms
Packets bin or ceil(1500/32) = 47B

Pkts size bin

Fr
eq

.

Pkts size bin

Fr
eq

.

Pkts size bin

Fr
eq

.

For 32x32 resolution

Example of a               flow

Flowpics: 

2 Pkts size histogramsGet pkts time series1

window 1

window 2

window 3
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Window size of 15s/32 = 468ms
Packets bin or ceil(1500/32) = 47B

Pkts size bin

Fr
eq

.

Pkts size bin

Fr
eq

.

Pkts size bin

Fr
eq

.

For 32x32 resolution

0 310

31

Each column is a frequency histogram
of a different window

2 Pkts size histogramsGet pkts time series1 Stack histograms3

windows

pk
ts

 s
iz

e 
bi

n

Example of a               flow

Flowpics: 

window 1

window 2

window 3

First 15s
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Sparsity proportional to image resolution

IMC22 paper contrasts 32x32 against 1500x1500
mini-flowpic

Flowpics: 



Experimental settings
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Rotate

Color jitter

Horizontal flip

Change RTT

Packet loss

Time shift

Multiply packets timestamp
by a random factor

Remove a window of packets

Add a random factor to
Packets timestamp

original

Image-based Time series-based



Experimental settings (1/3)

23

pretraining Script HumanUCDAVIS-19



Experimental settings (1/3)
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pretraining Script Human

100 samples 
per class

+
Augmented

9 times

UCDAVIS-19
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pretraining Script Human

100 samples 
per class

+
Augmented

9 times

UCDAVIS-19

Training

Train 80 / val 20
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pretraining Script Human

100 samples 
per class

+
Augmented

9 times

Leftover

UCDAVIS-19

Training

Train 80 / val 20



Experimental settings (1/3)
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pretraining Script Human

100 samples 
per class

+
Augmented

9 times

Leftover

UCDAVIS-19

Training Testing

Train 80 / val 20

Performance metric: accuracy



Experimental settings (1/3)
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pretraining Script Human

100 samples 
per class

+
Augmented

9 times

Leftover

UCDAVIS-19

Training Testing

Other datasets Train (80) Val (10) Test (10)

Train 80 / val 20

Performance metric: accuracy

Performance metric: F1 score



Experimental settings (2/3)

29

Created a framework to
• Trigger multiple modeling campaigns
• Fine-grained tracking of model training/inference performance
• Collect model artifacts
• Bind modeling to dataset splits



Experimental settings (2/3)
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Created a framework to
• Trigger multiple modeling campaigns
• Fine-grained tracking of model training/inference performance
• Collect model artifacts
• Bind modeling to dataset splits

Created 13 campaigns for a total of 2,760 experiments

https://github.com/tcbenchstack/tcbench https://doi.org/10.6084/m9.figshare.c.6849252.v3 https://tcbenchstack.github.io/tcbench/papers/imc23/

Code artifacts Data artifacts Documentation



Experimental settings (3/3)

We contacted IMC22 paper’s authors mostly during camera ready

The IMC22 paper has a github repo

• Code only for SimCLR pretraining
• Network architectures and training are not the same as in the paper
• As is, the code is mixing training includes also testing samples

https://github.com/eyalho/mini-flowpic-traffic-classification



Outline

1. Introduce the IMC22 paper and set our goals

2. Datasets and methodology

4. Closing remarks
32



ML Baseline



ML baseline
Input (size) Model Paper Accuracy 95th CI

Script Human
Flowpic (32x32) CNN LeNet5 IMC22 98.67   n.a. 92.40  n.a.
Flowpic (32x32) XGBoost Ours 96.80±0.37 73.65±2.14
Time series (3x10) XGBoost Ours 94.53±0.56 66.91±1.40

(a)

(b)

(a) Flattened flowpic; (b) concat first 10 values of packet size, direction and inter arrival time
Our results are aggregation of 15 experiments (5 splits x 3 seeds)

G0
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ML baseline
Input (size) Model Paper Accuracy 95th CI

Script Human
Flowpic (32x32) CNN LeNet5 IMC22 98.67   n.a. 92.40  n.a.
Flowpic (32x32) XGBoost Ours 96.80±0.37 73.65±2.14
Time series (3x10) XGBoost Ours 94.53±0.56 66.91±1.40

-4.14
(a)

(b)

(a) Flattened flowpic; (b) concat first 10 values of packet size, direction and inter arrival time
Our results are aggregation of 15 experiments (5 splits x 3 seeds)

-1.87

G0

• On Script, results on par with flowpic
but lower performance with time series 
(10 pkts -vs- 15s of traffic)
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ML baseline
Input (size) Model Paper Accuracy 95th CI

Script Human
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(b)
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Our results are aggregation of 15 experiments (5 splits x 3 seeds)

-18.75-1.87

• On Script, results on par with flowpic
but lower performance with time series 
(10 pkts -vs- 15s of traffic)

• On Human, unexpectedly large differences

G0
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ML baseline
Input (size) Model Paper Accuracy 95th CI

Script Human
Flowpic (32x32) CNN LeNet5 IMC22 98.67   n.a. 92.40  n.a.
Flowpic (32x32) XGBoost Ours 96.80±0.37 73.65±2.14
Time series (3x10) XGBoost Ours 94.53±0.56 66.91±1.40

-4.14 -25.49
(a)

(b)

(a) Flattened flowpic; (b) concat first 10 values of packet size, direction and inter arrival time
Our results are aggregation of 15 experiments (5 splits x 3 seeds)

-18.75-1.87

Be to
understand the cause of the 

G0

• On Script, results on par with flowpic
but lower performance with time series 
(10 pkts -vs- 15s of traffic)

• On Human, unexpectedly large differences



Supervised settings
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Benchmark augmentations in supervised setting
Test on Script Test on Human Test on Leftover

IMC22 Ours IMC22 Ours Ours
flowpic res. 32 64 1500 32 64 1500 32 64 1500 32 64 1500 32 64 1500

No augment. 98.67 99.10 96.22 95.64±0.37 95.87±0.29 94.93±0.72 92.40 85.60 73.30 68.84±1.45 69.08±1.35 69.32±1.63 95.78±0.29 96.09±0.38 95.79±0.51
Rotate 98.60 98.87 94.89 96.31±0.44 96.93±0.46 95.69±0.39 93.73 87.07 77.30 71.65±1.98 71.08±1.51 68.19±0.97 96.76±0.35 97.00±0.38 95.79±0.31
Horizontal flip 98.93 99.27 97.33 95.47±0.45 96.00±0.59 94.86±0.79 94.67 79.33 87.90 69.40±1.63 70.52±2.03 73.90±1.06 95.68±0.40 96.32±0.59 95.97±0.80
Color jitter 96.73 96.40 94.00 97.56±0.55 97.16±0.62 94.93±0.68 82.93 74.93 68.00 68.43±2.82 70.20±1.99 69.08±1.72 96.93±0.56 96.46±0.46 95.47±0.49
Packet loss 98.73 99.60 96.22 96.89±0.52 96.84±0.63 95.96±0.51 90.93 85.60 84.00 70.68±1.35 71.33±1.45 71.08±1.13 96.99±0.39 97.25±0.39 96.84±0.49
Time shift 99.13 99.53 97.56 96.71±0.60 97.16±0.49 96.89±0.27 92.80 87.30 77.30 70.36±1.63 71.89±1.59 71.08±1.33 97.02±0.50 97.51±0.46 97.67±0.29
Change RTT 99.40 100.00 98.44 97.29±0.35 97.02±0.46 96.93±0.31 96.40 88.60 90.70 70.76±1.99 71.49±1.59 71.97±1.08 98.38±0.18 97.97±0.39 98.19±0.22

Mean diff -2.05 -2.26 -0.63 -21.96 -13.27 -9.13

Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

G1
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2.21 12.19 

Benchmark augmentations in supervised setting

40

From IMC22 evaluation
• 32x32 is superior to higher resolutions

Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

G1
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Benchmark augmentations in supervised setting

41

From IMC22 evaluation
• 32x32 is superior to higher resolutions

• Contained difference between 
Script and Human partitions

6.61

Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

G1
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Benchmark augmentations in supervised setting

42

From Our evaluation
• Small differences between resolutions

but 1 model @1500x1500 takes ~20min vs <1min @32x32

Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

0.81 -0.64 

From IMC22 evaluation
• 32x32 is superior to higher resolutions

• Contained difference between 
Script and Human partitions

G1



Test on Script Test on Human Test on Leftover

IMC22 Ours IMC22 Ours Ours
flowpic res. 32 64 1500 32 64 1500 32 64 1500 32 64 1500 32 64 1500

No augment. 98.67 99.10 96.22 95.64±0.37 95.87±0.29 94.93±0.72 92.40 85.60 73.30 68.84±1.45 69.08±1.35 69.32±1.63 95.78±0.29 96.09±0.38 95.79±0.51
Rotate 98.60 98.87 94.89 96.31±0.44 96.93±0.46 95.69±0.39 93.73 87.07 77.30 71.65±1.98 71.08±1.51 68.19±0.97 96.76±0.35 97.00±0.38 95.79±0.31
Horizontal flip 98.93 99.27 97.33 95.47±0.45 96.00±0.59 94.86±0.79 94.67 79.33 87.90 69.40±1.63 70.52±2.03 73.90±1.06 95.68±0.40 96.32±0.59 95.97±0.80
Color jitter 96.73 96.40 94.00 97.56±0.55 97.16±0.62 94.93±0.68 82.93 74.93 68.00 68.43±2.82 70.20±1.99 69.08±1.72 96.93±0.56 96.46±0.46 95.47±0.49
Packet loss 98.73 99.60 96.22 96.89±0.52 96.84±0.63 95.96±0.51 90.93 85.60 84.00 70.68±1.35 71.33±1.45 71.08±1.13 96.99±0.39 97.25±0.39 96.84±0.49
Time shift 99.13 99.53 97.56 96.71±0.60 97.16±0.49 96.89±0.27 92.80 87.30 77.30 70.36±1.63 71.89±1.59 71.08±1.33 97.02±0.50 97.51±0.46 97.67±0.29
Change RTT 99.40 100.00 98.44 97.29±0.35 97.02±0.46 96.93±0.31 96.40 88.60 90.70 70.76±1.99 71.49±1.59 71.97±1.08 98.38±0.18 97.97±0.39 98.19±0.22

Mean diff -2.05 -2.26 -0.63 -21.96 -13.27 -9.13
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Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

From Our evaluation
• Small differences between resolutions

but 1 model @1500x1500 takes ~20min vs <1min @32x32

• Confirmed discrepancy observed 
via XGBoost

From IMC22 evaluation
• 32x32 is superior to higher resolutions

• Contained difference between 
Script and Human partitions

G1



Test on Script Test on Human Test on Leftover

IMC22 Ours IMC22 Ours Ours
flowpic res. 32 64 1500 32 64 1500 32 64 1500 32 64 1500 32 64 1500

No augment. 98.67 99.10 96.22 95.64±0.37 95.87±0.29 94.93±0.72 92.40 85.60 73.30 68.84±1.45 69.08±1.35 69.32±1.63 95.78±0.29 96.09±0.38 95.79±0.51
Rotate 98.60 98.87 94.89 96.31±0.44 96.93±0.46 95.69±0.39 93.73 87.07 77.30 71.65±1.98 71.08±1.51 68.19±0.97 96.76±0.35 97.00±0.38 95.79±0.31
Horizontal flip 98.93 99.27 97.33 95.47±0.45 96.00±0.59 94.86±0.79 94.67 79.33 87.90 69.40±1.63 70.52±2.03 73.90±1.06 95.68±0.40 96.32±0.59 95.97±0.80
Color jitter 96.73 96.40 94.00 97.56±0.55 97.16±0.62 94.93±0.68 82.93 74.93 68.00 68.43±2.82 70.20±1.99 69.08±1.72 96.93±0.56 96.46±0.46 95.47±0.49
Packet loss 98.73 99.60 96.22 96.89±0.52 96.84±0.63 95.96±0.51 90.93 85.60 84.00 70.68±1.35 71.33±1.45 71.08±1.13 96.99±0.39 97.25±0.39 96.84±0.49
Time shift 99.13 99.53 97.56 96.71±0.60 97.16±0.49 96.89±0.27 92.80 87.30 77.30 70.36±1.63 71.89±1.59 71.08±1.33 97.02±0.50 97.51±0.46 97.67±0.29
Change RTT 99.40 100.00 98.44 97.29±0.35 97.02±0.46 96.93±0.31 96.40 88.60 90.70 70.76±1.99 71.49±1.59 71.97±1.08 98.38±0.18 97.97±0.39 98.19±0.22

Mean diff -2.05 -2.26 -0.63 -21.96 -13.27 -9.13
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Benchmark augmentations in supervised setting

From Our evaluation
• Small differences between resolutions

but 1 model @1500x1500 takes ~20min vs <1min @32x32

• Confirmed discrepancy observed 
via XGBoost

• Leftover is consistent with Script

Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

-0.23  

-0.23  

-0.79  

From IMC22 evaluation
• 32x32 is superior to higher resolutions

• Contained difference between 
Script and Human partitions

G1



…so, what’s the 
problem with Human?
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Investigating human-vs-script performance gap
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Investigating human-vs-script performance gap

something odd is happening
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Investigating human-vs-script performance gap

1 train split
(100 samples)

Full script
partition

Full human
partition

Many packets in bin

Few packets in bin

Full pretraining
dataset
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dataset despite the sampling
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Investigating human-vs-script performance gap

Full human
partition

Many packets in bin

Few packets in bin

Full pretraining
dataset

1 train split
(100 samples)

Full Script
partition Very similar to training split

Visually very similar to full 
dataset despite the sampling
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Investigating human-vs-script performance gap

Many packets in binFull pretraining
dataset

1 train split
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Visually very similar to full 
dataset despite the sampling
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Investigating human-vs-script performance gap

Many packets in binFull pretraining
dataset

1 train split
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Investigating human-vs-script performance gap

Many packets in binFull pretraining
dataset

1 train split
(100 samples)

Very similar to training split

Visible differences

Visually very similar to full 
dataset despite the sampling

Full Script
partition

Full Human
partition
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Investigating human-vs-script performance gap

Many packets in bin

Few packets in bin

Full pretraining
dataset

1 train split
(100 samples)

Very similar to training split

Visible differences

Visually very similar to full 
dataset despite the sampling

̰ but does NOT
seem a big problems

Full Script
partition

Full Human
partition
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UCDAVIS-19 human partition
suffers from a data shift

confirmed by

[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19

1. More analysis of the dataset
2. Replication of results of [1]

check our paper appendix 😉

Unclear why this did not affect IMC22 paper results
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Benchmark augmentations in supervised setting

In the IMC22 paper states that
• Change RTT is the best performing augmentations
• Time series augmentations are better than image transformations

…but reported

[1] Statistical comparisons of classifiers over multiple data sets. The Journal of Machine learning research

G1
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Benchmark augmentations in supervised setting

We study augmentations performance via critical distance [1]
• For the same input configuration, rank augmentations from best (1) to worse (7)
• Compute average rank for each augmentation
• Use a pair-wise post-hoc Nemenyi test based and CD to assess statistical similarity

[1] Statistical comparisons of classifiers over multiple data sets. The Journal of Machine learning research

𝑞a
𝑘(𝑘 + 1)
6𝑁Critical Distance (CD) = 

k : number of augmentations
N : number of experiments
𝑞a : studentized range statistic

G1

In the IMC22 paper states that
• Change RTT is the best performing augmentations
• Time series augmentations are better than image transformations

…but reported



58

Benchmark augmentations in supervised setting

[1] Statistical comparisons of classifiers over multiple data sets. The Journal of Machine learning research

Augmentations connected by horizontal lines
are NOT statistically different

G1
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Benchmark augmentations in supervised setting

[1] Statistical comparisons of classifiers over multiple data sets. The Journal of Machine learning research

Takeaway

• Augmentations improve performance

• Time series augmentations are not 
statistically different from image 
augmentations

G1

Augmentations connected by horizontal lines
are NOT statistically different



Contrastive learning 
settings
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Supervised -vs- Contrastive learning

(x, y) z !𝑦

Latent
space

feature
extractor

classifier

In supervised training
Good separation in the latent space leads to good performance

…but
• The (cross entropy) loss is computed after the classifier
• The latent space geometry is indirectly controlled
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Supervised -vs- Contrastive learning

(x, y) z !𝑦

Latent
space

feature
extractor

classifier

In supervised training
Good separation in the latent space leads to good performance

…but
• The (cross entropy) loss is computed after the classifier
• The latent space geometry is indirectly controlled

x z

(x, y)

augPretrain

Fine-tune !𝑦
added

classifier

Few samples

In contrastive learning training
a model is trained in an manner 

controlling the latent space geometry
the learned representation is finetuned with 

a for the specific classification task
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Self-supervision in contrastive learning
In the absence of a label, a sample can only be similar to itself
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Self-supervision in contrastive learning
In the absence of a label, a sample can only be similar to itself
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Self-supervision in contrastive learning
In the absence of a label, a sample can only be similar to itself

• Positive and anchor form their own class à harder problem than supervision
• The better the representation, the smaller the trainset to finetune a classifier
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Contrastive learning + finetuning (1/2)

[1] A Simple Framework for Contrastive Learning of Visual Representations, ICML20

• Which algorithm? SimCLR [1]
• Which augmentations? TimeShift and ChangeRTT
• Which dataset size? 100 samples for pretrain, 10 for finetune

G2
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Contrastive learning + finetuning (1/2)

[1] A Simple Framework for Contrastive Learning of Visual Representations, ICML20

• Which algorithm? SimCLR [1]
• Which augmentations? TimeShift and ChangeRTT
• Which dataset size? 100 samples for pretrain, 10 for finetune

1st augment.
IMC22

Change RTT Packet loss Change rtt Color jitter
2nd augment. Time shift Color jitter Rotate Color jitter Rotate Rotate
Test on Script 94.5 92.18±0.31 90.17±0.41 91.94±0.30 91.72±0.36 92.38±0.32 91.79±0.34

Test on Human ~80.0 74.69±1.13 73.67±1.24 71.22±1.20 75.56±1.23 74.33±1.26 71.64±1.23

G2
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Takeaways
• On Script, performance are comparable to IMC22
• On Human, still evident performance gap
• Any transformation pair is qualitative equivalent

[1] A Simple Framework for Contrastive Learning of Visual Representations, ICML20

1st augment.
IMC22

Change RTT Packet loss Change rtt Color jitter
2nd augment. Time shift Color jitter Rotate Color jitter Rotate Rotate
Test on Script 94.5 92.18±0.31 90.17±0.41 91.94±0.30 91.72±0.36 92.38±0.32 91.79±0.34

Test on Human ~80.0 74.69±1.13 73.67±1.24 71.22±1.20 75.56±1.23 74.33±1.26 71.64±1.23

• Which algorithm? SimCLR [1]
• Which augmentations? TimeShift and ChangeRTT
• Which dataset size? 100 samples for pretrain, 10 for finetune

Contrastive learning + finetuning (1/2)G2



69

Script Human
No augmentation 98.37±0.19 72.95±0.96

Rotate 98.47±0.25 73.73±1.09
Horizontal flip 98.20±0.15 74.58±1.16

Color jitter 98.63±0.21 72.47±1.02
Packet loss 98.63±0.19 73.43±1.25

Time shift 98.60±0.22 73.25±1.17
Change rtt 98.33±0.16 72.47±1.04

SimCLR+ fine-tuning 93.90±0.74 80.45±2.37

Su
pe

rv
is

ed

Contrastive learning + finetuning (2/2)

Lifting the constraint of 100 
samples per class à 80/20 train/val
split on the whole pretraining
• Script improves in supervised setting
• Human improves in contrastive 

learning setting

G2
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Script Human
No augmentation 98.37±0.19 72.95±0.96

Rotate 98.47±0.25 73.73±1.09
Horizontal flip 98.20±0.15 74.58±1.16

Color jitter 98.63±0.21 72.47±1.02
Packet loss 98.63±0.19 73.43±1.25

Time shift 98.60±0.22 73.25±1.17
Change rtt 98.33±0.16 72.47±1.04

SimCLR+ fine-tuning 93.90±0.74 80.45±2.37

Su
pe

rv
is

ed

Contrastive learning + finetuning (2/2)

Takeaways
• Augmentations are not the final replacement for real samples
• Contrastive learning can help to reduce data shift (?)

G2

Lifting the constraint of 100 
samples per class à 80/20 train/val
split on the whole pretraining
• Script improves in supervised setting
• Human improves in contrastive 

learning setting



Other datasets
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MIRAGE-22 MIRAGE-22 UTMOBILENET-21 MIRAGE-19

Augmentations (>10pkts) (>1000pkts) (>10pkts) (>10pkts)
No augmentation 90.97±1.15 83.35±3.13 79.82±1.53 69.91±1.57

Rotate 88.25±1.20 87.32±2.24 79.45±1.28 60.35±1.17

Horizontal flip 91.90±0.84 83.82±2.26 80.03±1.33 69.78±1.28

Color jitter 89.77±1.16 81.40±3.62 78.68±2.14 67.00±1.11

Packet loss 92.34±1.10 87.19±2.52 72.07±1.73 67.55±1.46

Time shift 92.80±1.21 86.73±3.88 81.91±2.21 70.33±1.26

Change RTT 93.75±0.83 91.48±2.12 81.32±1.54 74.28±1.22

Benchmarking augmentations on other datasets

Takeaways
Change RTT and Time Shift are better than other augmentations

G3
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• Analysis of dropout
• Analysis of SimCLR projection layers
• …and other details

…in the paper



Outline

1. Introduce the IMC22 paper and set our goals

2. Datasets and methodology

3. Results
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Closing remarks

is incredibly hard 
…but worth if 

Qualitatively our results are aligned with the IMC22 paper
but the UCDAVIS-19

There is in the areas touched
by our paper (check our paper for inspiration 😉)
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https://github.com/tcbenchstack/tcbench https://doi.org/10.6084/m9.figshare.c.6849252.v3 https://tcbenchstack.github.io/tcbench/papers/imc23/

Code artifacts Data artifacts Documentation

alessandro.finamore@huawei.com
mail@afinamore.io

https://afinamore.io
https://prc-ai4net.github.io/


