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ABSTRACT

Mobile phones and tablets can be considered as the first incarnation
of the post-PC era. Their explosive adoption rate has been driven
by a number of factors, with the most signifcant influence being
applications (apps) and app markets. Individuals and organizations
are able to develop and publish apps, and the most popular form of
monetization is mobile advertising.

The mobile advertisement (ad) ecosystem has been the target of
prior research, but these works typically focused on a small set of
apps or are from a user privacy perspective. In this work we make
use of a unique, anonymized data set corresponding to one day of
traffic for a major European mobile carrier with more than 3 million
subscribers. We further take a principled approach to characterize
mobile ad traffic along a number of dimensions, such as overall
traffic, frequency, as well as possible implications in terms of en-
ergy on a mobile device.

Our analysis demonstrates a number of inefficiencies in today’s
ad delivery. We discuss the benefits of well-known techniques,
such as pre-fetching and caching, to limit the energy and network
signalling overhead caused by current systems. A prototype im-
plementation on Android devices demonstrates an improvement of
50% in terms of energy consumption for offline ad-sponsored apps
while limiting the amount of ad related traffic.
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1. INTRODUCTION
Mobile application (app) markets have been a major success and

adoption factor for smartphones, allowing individuals and organi-
zations to develop and sell apps to interested users. The App Store
from Apple and Google Play (previously named Android Market)
from Google are the two major platforms where developers sell or
freely share their apps. Both Apple and Google have played a major
role in democratizing revenues related to mobile apps. In particu-
lar, considering that 73% of the apps in Google Play are free [1],
it can be expected that free apps tend to obtain a larger number of
downloads than paid apps1. The revenue model adopted by many
free apps includes advertisements (ads) that are embedded in the
app and displayed at various points during use. The adoption of the
ad model in mobile apps has strong implications for both the users
and the network. As an example, a recent study shows that 65-75%
of the energy consumed in a gaming app (Angry Birds) on Android
devices is spent by third party advertising modules [2].

Mobile advertising has been the focus of recent research, target-
ing the system design [3], energy [2, 4], and privacy aspects of ad
services [5, 6]. However, there is still very little known about the
ad delivery mechanisms adopted in current mobile networks. This
happens primarily because existing work tends to focus on the in-
spection of traffic generated by a small number of popular apps.
In this work, we aim to characterize and quantify ad traffic in real
mobile networks. For that, we study a data trace covering one day
of traffic for more than 3 million subscribers of a major European
mobile carrier.

In such an attempt, we develop a methodology for the classi-
fication of ad traffic that incorporates the inspection of the SDKs
provided by ad networks, traffic inspection of mobile apps, as well
as rules extracted through a web log obtained from the aforemen-
tioned network. Using a rule set comprising 122 rules, we classify
traffic into i) ad networks, ii) analytics, and iii) mediation services,
and study its characteristics along a number of dimensions (traf-
fic volume, frequency, type of content, etc.) for three major mobile
platforms found in the trace. Our analysis reveals several properties
of the mobile ad ecosystem:

• The mobile ad ecosystem is overcrowded and unmoderated,
with AdMob and other Google services being the leaders.

• Ads are not just a strain on Android devices but are also
prominent on Apple devices.

• Ads account for 1% of all mobile traffic in our data set, a
significant component of the daily traffic of each device. Re-

1Although no ground truth data has been publicly available to con-
firm this conjecture.
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Figure 1: The mobile advertising ecosystem and the interaction

of the players within it.

Provider Retrieval Mechanism Refresh Interval (s)
Push Pull Min Max

AdMob X X 12 120

Millennial Media X 15 N/A

InMobi X 20 N/A

Table 1: Description of the refresh intervals and retrieval mech-

anisms supported by three popular ad networks.

sults show that for 3% of Android devices, ads account for
more than 1 MB, while for Apple devices this is even higher
and corresponds to more than 3 MB.

• Mobile ad traffic is mainly composed of static images and
text files that are likely to be re-downloaded, with refresh
intervals in the order of just a few seconds.

• Mobile ad traffic is the only type of network activity for some
apps.

On a wired network, the transmissions of traffic can be assumed
to be "free”, however on a mobile network these are accompanied
by control channel signalling overhead, use of scarce spectrum re-
sources and battery implications. Low refresh intervals for down-
loading objects that have already been fetched previously further
depletes the scarce resources of mobile networks. Moreover, solu-
tions, such as pre-fetching and caching, are well understood in the
system and networking community to readily provide solutions to
a more spectrum-aware and energy-aware delivery of ads. Lever-
aging these techniques, we developed a system, called AdCache,
that enables energy efficient and network friendly cache-based ad
delivery, built on the intrinsic characteristics of ad traffic and mo-
bile apps. AdCache enables the retrieval of ads under optimal net-
work connectivity conditions for later display to the user, hence
avoiding excessive energy wastage, signalling strains on the net-
work and worsening the app responsiveness. We implement and
test AdCache on Android devices and show that it is able to reduce
the energy consumption of mobile advertising in offline apps by up
to 50% even with a low ad refresh interval of 20 seconds.

2. EXTRACTING AD TRAFFIC
The mobile ad ecosystem, as detailed by Leontiadis et al [1],

comprises multiple players: brands wanting to attract consumers,
ad agencies designing ad campaigns for brands, ad networks used
for distribution, publishers who create and publish mobile apps,
and users to which ads are shown. Mediation services are an addi-
tional player that integrates several ad networks, allowing publish-
ers to combine different ad networks and switch between them on
the fly. Their main advantage is that they can potentially increase
the publisher’s revenues as if one ad network fails to return an ad at
its slot, it can try another ad network to fill this gap.

Rank Application Name Category Ad Provider

1 Facebook Social Network N/A
2 Talking Pierre Entertainment MobClix

3 Ceramic Destroyer Arcade AdMob

4 WhatsApp Communication N/A

5 Cartoon Camera Photo MobFox, MadVerti

6 Skype Communication N/A

7 Angry Birds Arcade Burstly

8 Onavo Tools N/A

9 Talking Tom Cat 2 Entertainment MobClix
10 Viber Communication N/A

Table 2: Usage of ad networks on the top 10 most popular free

mobile apps in the UK (As of 27th Feb. 2012).

URL domain Object path Type Role

media.admob.com adk-core-v40.js Ad Net Conf. Script

*.g.doubleclick.net mads/gma Ad Net Get Ad
*.googlesyndication.com pagead/simgad Ad Net Get Ad

*.googlesyndication.com pagead/js Ad Net Static content

*.googlesyndication.com pagead Ad Net Static content

*.g.doubleclick.net aclk Ad Net Report Click

Table 3: Extract of the rule set for AdMob.

Ad networks and publishers are pursuing common objectives.
Ad networks wish to maximize the number of clicks on ads through
targeting the right users to satisfy the demands of the advertisers.
Meanwhile, publishers are looking to maximize their revenue by
increasing their click-through rate (the number of clicks on an ad
divided by the number of times an ad is shown), using mediation
services to fill up their advertising space, and obtain profiling in-
formation for targeting. Rather than inspecting all the relations
between the players in this complex ecosystem, we focus our in-
terest on the distribution mechanism used by ad networks and ad-
sponsored apps running on the device, as depicted in Figure 1.

2.1 Understanding ad networks’ SDKs

The ecosystem leverages the relative simplicity in incorporating
ads in mobile app development. Ad networks provide a Software
Development Kit (SDK) that enables integration of ads into mobile
apps, hiding the protocol peculiarities. As shown in Table 1, pop-
ular ad networks such as AdMob, Millennial Media and InMobi
allow developers to define which kind of ads are embedded, how
they are delivered (push/pull techniques) and how often they are
refreshed. The most common type of ad in mobile apps are ban-
ners (they are placed at the top or bottom of the screen and span
its width) and interstitials (full-screen ads, covering a large part or
all of the screen for a short period of time). Unlike banners, in-
terstitials are typically shown as users transition between different
activities in the app. Banners are usually composed by text, images,
and Javascript code.

The protocols used by ad networks for fetching and reporting
are generally based on plain HTTP requests using REST APIs, with
most using HTTP GET methods. However, the ad networks studied
differ slightly in the way they interact. As an example, AdMob acts
as an internal mediation service to aggregate all Google’s services
(e.g. Doubleclick and AdSense) whereas InMobi only requires a
single HTTP POST request per action. Millennial Media needs
two HTTP connections with two different servers: one to get the
ad, and the other one to get the associated static content.
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Figure 2: Example of a real work flow for AdMob. The device incorporates the three power modes for mobile interfaces, and the

transitions between them. Transport layer details are not included. The HTTP requests include the domain name and the strings

used to identify the semantics in bold.

Figure 2 shows an example of a real work flow for an offline
app requesting AdMob ads and the action triggered on a user click.
The figure highlights the semantics of the HTTP requests (shown
in Table 3) and some of the domains used by AdMob. Once a ra-
dio channel has been established, the client performs a DNS lookup
and the necessary HTTP transactions. As we can see, AdMob com-
prises several services and the number of HTTP requests can be
considerably high. A number of intermittent connections are go-
ing to be initiated depending on the refresh interval, causing costly
transitions between the different radio power modes. To our ben-
efit however, the resulting HTTP ”conversations” tend to have a
consistent structure, allowing one to derive a number of regular ex-
pressions that could be used in the classification of ad traffic.

2.2 Identification of ad traffic
Table 2 lists the top 10 most popular free apps on Google Play,

as of 27th Feb. 2012, and the category that each app belongs to.
Manually inspecting the traffic on a device, we also identified the
ad networks used by each app. We can see how, only considering
this small set, the ad ecosystem is highly diverse with a number of
different players, potentially following different approaches in the
delivery of ads.

To classify ad traffic accurately, we need to be able to incorporate
such diversity. We perform such a task in two ways: i) by capturing

traces from app execution to understand the cause-effect relation-
ships (e.g. launching an ad-sponsored mobile app, requesting and
clicking on the ad displayed), or ii) by inspecting traffic traces that
are collected within a provider in order to identify peculiar charac-
teristics of the traffic (e.g. hostnames or URL parameters). In the
former case, we will be able to only inspect the ad delivery strategy
chosen by the app publisher. In the latter case, we can further obtain
information about the strategies followed by multiple publishers, as
well as the diversity in ad delivery, as manifested through the use
of different mediation services, and ad networks. In both cases,
however, the fundamental challenge at hand is to be able to derive
a comprehensive set of rules to classify the flows that are related to
ad networks, mediation services, and any possible analytics traffic,
that facilitates the targeting of users with relevant ads.

With that in mind, we have used four different techniques. First,
we manually inspected the ad network SDKs and their documenta-
tion (if publicly available) to capture the way they use the network.
Second, we installed a number of popular ad-based apps on an An-
droid phone, and ran tcpdump to inspect what kind of services they
use and the network traffic they generate, including the HTTP re-
quests. Third, we created our own app that displayed an ad banner,
and connected it with the most popular ad networks, to character-
ize the network behavior observed across a variety of ad networks.
Lastly, we analyzed a trace containing all HTTP transactions car-
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Figure 3: CCDF of the volume of ad traffic per user.

ried out by more than 3 million subscribers during a whole day
on a mobile network covering an entire country in Europe. In this
latter case, we made sure to filter out traffic resulting from non-
mobile devices, given that the network in question allows tethering
and offers 3G USB dongles that are used by non-mobile devices to
connect to the mobile network.

The combination of the four processes, mentioned above, helped
us obtain a set of 122 rules featuring regular expressions that are
able to parse a URL and classify traffic as i) ad network, ii) ana-
lytics, iii) mediation service, or iv) other. The rule set also helps
us to identify the type of action to be performed given a HTTP re-
quest. In Table 3, we show some examples of the rules obtained.
Each rule, defined by a domain and URL object path, identifies the
type of service, goal of the request (e.g. obtain configuration script,
an ad or reporting a click), ad network and HTTP request method
(e.g. POST vs. GET) used. The compiled dictionary is publicly
available at [7].

3. AD TRAFFIC CHARACTERISATION
In this section we characterize ad traffic leveraging on a data

set containing 1.7 billion traffic connections, which corresponds to
22TB of volume downloaded on 13th Aug. 2011 by more than 3
million subscribers of a major European mobile network. The data
set comprises all TCP traffic, excluding HTTPS, seen by acceler-
ation proxies installed on the network, that also cache and com-
press content for more efficient delivery. To the best of our knowl-
edge, and according to the level of traffic at the peering point of
this provider, we estimate the proportion of the secure traffic to be
11.5%.

The monitoring activity at each vantage point is reported in a set
of text log files. Each entry in the logs contains a set of standard
information, such as IP addresses, port numbers, number of bytes
downloaded, and other HTTP specific information, such as content
type, HTTP user agent, and HTTP response code. User information
is anonymized but consistently hashed to a unique ID. Each line of
the logs corresponds to a different TCP connection performed by a
user.

The operator under study allows tethering and 3G connectivity
through a USB dongle. In order to ensure that our analysis focuses
on ad traffic generated truly by mobile devices and apps, we have
filtered out this traffic. To achieve this we used a methodology
based on the inspection of the HTTP user agent, normally including
information about the Operating System (OS) of the device. All
PC users, as well as those found to be using more than one OS
during the day, have been filtered out from the original data set.
This amount of traffic is not negligible, corresponding to 29.6% of
the bytes downloaded by 7.2% of the users. This step further allows
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Figure 4: The fraction of mobile ad ecosystem traffic over the

total traffic.

us to study ad delivery against the type of the platform used, e.g.
Android, iPhone and iPad.

In what follows, we study the ad, mediation, and analytics traffic
(called regex traffic for short) extracted from the sanitized mobile
data set. We want to highlight that analytics services provide a stan-
dard framework to control the general activity of apps so they are
not adopted in ad-sponsored apps only. However, we decided to
include them in the analysis for completeness. We focus our char-
acterization along five main axes: i) overall volume of ad services,
ii) main actors, iii) type of ad content, iv) generating apps, and v)

ad frequency.

3.1 Ad volume
Figure 3 shows the Complementary Cumulative Distribution Func-

tion (CCDF) of the regex traffic volume. While this traffic only
corresponds to 31 kB per day for 50% of the devices, the distribu-
tions are characterized by their long tails. We can see how 10% and
1% of the iPhone devices download more than 400 kB and 2 MB
of advertising related content respectively, while Android and iPad
devices consume even more. Unexpectedly, the top 5 users together
have consumed 1.35 GB, 701 MB and 124 MB just for regex traf-
fic on Android, iPhone and iPad respectively. The single top users
account for 458 MB, 167 MB and 31 MB for the three platforms.

These values might be the indication of outliers in the popula-
tion. To better evaluate the weight of the regex traffic, Figure 4
reports the Cumulative Distribution Function (CDF) of the ratio
between the volume of regex traffic and the total volume of traf-
fic consumed by each user in the entire day. We can see that the
traffic caused by the mobile ad ecosystem players is a strong com-
ponent of the users’ traffic. In particular, for 20% of iPad devices
this traffic accounts for more than 4.7% of their traffic, while for
iPhone devices it is 7.6%. This phenomenon is even more critical
for Android users with 50% of them having more than 5% their
total volume related to regex traffic.

3.2 Main actors
The regex data set contains three classes of ad traffic: ad net-

works, analytics services, and mediation services. These classes do
not have the same weight on the aggregate volume. Table 4 reports
the percentage of users, flows, and bytes for the three classes of
traffic across the three most popular mobile platforms. We can see
some differences across the device types. In particular, Android
and iPhone present similar shares while for iPad both mediation
and analytics services are less adopted. More than 90% of the vol-
ume is delivered by the ad networks, but we can also notice a sharp
component of “control” traffic related to analytics and mediation
services.
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%Users %Flows %Bytes
Devtype AN AS MS AN AS MS AN AS MS

Android 81.3 61.0 32.2 65.7 15.6 18.3 90.7 2.5 6.8
iPhone 77.3 60.0 23.6 65.5 22.2 12.3 89.4 5.7 4.9
iPad 88.4 35.8 13.7 87.2 6.9 5.9 96.9 1.5 1.6

AN = Ad Net., AS = Analytics Serv., MS = Mediation Serv.

Table 4: Breakdown of regex traffic with respect to class of traf-

fic and device type.
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In Figure 5 we show the main ad networks, mediation and analyt-
ics services found in our data, along with their popularity (in terms
of the percentage of users using them). The figure is partitioned into
three areas, marking each type of service. The three different bars
capture the statistics for each type of mobile platform. Services are
sorted with respect to the popularity for Android devices with iAd
(Apple’s advertising service) added for completeness even though
it is available only for Apple devices. AdMob is clearly the dom-
inant service across all the ad networks serving 74.5%, 67.5% and
84.2% of all users. The remaining portion of the market is shared
across many other ad networks with Millennial Media and InMobi
leading only on Android devices. Furthermore, more than 10% of
the users communicate with services outside the top 10, underlining
the overcrowded nature of this ecosystem of services. Interestingly,
the market share of iAd in iPad is modest, being overtaken even by
smaller ad networks, such as GreyStripe and Jumptap. Mediation
services are dominated by AdWhirl, MobClix, and Burstly, but in
this case the differences are less significant than for ad networks.

Google’s main source of income is advertising2. The prominent
presence of Google in the mobile ad ecosystem is also clearly vis-
ible as AdMob, Google Analytics, and AdWhirl (open source but
under Google’s umbrella) are the dominating services. This dom-
inance can be seen in terms of both popularity (Figure 5) and also
in terms of volume and flows (Figure 6). In more detail, Google
services on Android devices account for 73% and 80% of ad flows
and bytes respectively whereas for iPhone devices the fraction of
volume is lower due to the presence of iAd which accounts for 8%
of the total bytes. AdMob’s presence is even stronger on the iPad
as it accounts for almost 90% of the total ad traffic on the platform.

Finally, Google Analytics and Flurry are the only two analytics
services we could identify in the data set. The analysis reveals that
these services are very popular across mobile apps, going beyond
the values obtained by mediation services. The limited popular-
ity of mediation services across mobile users indicates that mobile
apps are more likely to interact directly with ad networks, namely

2
http://investor.google.com/financial/
tables.html
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the set of organizations used by the ad services.

AdMob, instead of relying on third party agencies. We hypothesize
that this might be related to service quality, economical aspects, or
implementation details, however we cannot demonstrate this with
our data collection.

3.3 Type of ad content
As we schematically reported in Figure 2, ad traffic content is

a combination of images, HTML and Javascript code. Inspecting
the HTTP content type header field, we found that static content
such as ‘image/*’ accounts for 31.4%, 41.7%, and 49.1% of
Android, iPhone, and iPad devices’ ad volume respectively. The re-
maining portion is instead shared between ‘text/javascript’
and ‘text/html’which are generally used to configure the client,
dynamically load an ad and define its visual layout. Displaying
such kind of content on a mobile app also affects performance as it
requires a browser component to run completely embedded within
a native app.

While images are static objects by definition, different scripts
are also used to define the ad layout and behavior or client config-
urations, so they are more subject to change. To inspect the time
variability of the content, we set up a simple experiment. We se-
lected the top 1000 most popular objects for each device type, i.e.,
the content requested by the majority of the devices in the data set,
with each set of objects requested once per hour from a PC over
a day. Comparing the objects returned we found that for 95% of
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Top AdMob Android Apps
Rank App Name Category Users (%)

1 Angry Birds Arcade 11.48

2 Advanced Task Killer System Tools 9.77

3 Soccer Scores (FotMob) Sports 3.53

4 Drag Racing Arcade 2.69

5 Bubble Blast Arcade 2.69

Top AdMob iPhone Apps

Rank App Name Category Users (%)

1 TV Guide Entertainment 5.96

2 Grindr Dating 4.21

3 iFooty Sports 4.01

4 Words with Friends Arcade 3.51

5 Solitaire Arcade 2.80

Table 5: Top apps requesting AdMob ads both in Android and

iPhone. The right column indicates the percentage of users that

had installed the app out of the total users with AdMob traffic

for a given platform.

the cases there are no differences and many objects in the remain-
ing 5% corresponds to scripts differing only because of timestamps
embedded in the code, proving that ad content for mobile apps is
static.

Inspecting the hostnames and server IPs we have noticed that
the content is usually served through Content Delivery Networks
(CDNs). For each ad service we identified the CDN/hosts they
use, measuring the amount of bytes served by the CDN/host and
normalizing the values with respect to the total volume of each
ad service. To retrieve this information we relied on a commer-
cial database provided by MaxMind3 that maps an IP address to
the name of the organization (AS, CDN, network operator, hosting
company, etc.) that owns it. In Figure 7, we report a heat map
to show the relationships between ad services and the CDN/hosts
serving their content. The y-axis reports the ad service names
sorted as in Figure 5. The services are grouped together accord-
ing to the three classes of services previously introduced: analytics
services, mediation services and ad networks. The x-axis reports
the set of organizations used by the ad services. From the market
point of view, the heat map is sparse, given that most ad services
use a different organization for serving content. Most of the ad ser-
vices are served by a single organization, except AdMob, Burstly
and Jumptap, all of which balance the volume downloaded across
2 or 3 organizations. Beside Google, the only exception is Amazon
which is preferred to Akamai by many ad services.

3.4 Greedy apps requesting ads
Traffic classification of mobile apps is not a trivial task. The

methodologies available in the literature are usually based on the
inspection of both the user agent and URL of HTTP requests [8].
However, we found these techniques inaccurate especially for An-
droid where the user agent is usually not customized by app pub-
lishers. Considering the URLs of ad traffic, we noticed some pa-
rameters related to configuration (e.g., format and size of the ad),
and tracking info (e.g., country code, GPS position) but we found
also some identifiers related to the app name generating the traffic.
In particular, some ad services identify apps using a hash code, the
package name (e.g., com.rovio.angrybirds) or the real name (e.g.,
Angry Birds). While package names can be mapped to the real
name using information available on the market, this is not true
for hash codes which are created by the service when the publisher

3
http://www.maxmind.com/app/organization
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registers the app. Given these constraints, we decided to focus only
on app using AdMob since i) is the most popular ad service (as
seen in Figure 5) and ii) is the only service we found having the
documentation describing the URLs parameters related to the app
name4.

In Table 5 we report the top 5 apps, on Android and iPhone,
requesting ads from AdMob either directly using the SDK or via
mediation services. For each app listed, we detail the category and
the popularity, defined as the ratio between the number of devices
using the app and the number of devices contacting AdMob. Most
of the apps listed do not require the network access to use their
intended functionality. This is the case with games such as Angry
Birds, Bubble Blast, and system tools such as Advanced Task Killer.
Other apps related to sport, TV/cinema or social networking, such
as Grindr, instead require network access to perform properly. As
we will see later in more detail, in the first case ads not only rep-
resent a “waste” in volume but they also increase the energy con-
sumption since downloads are likely to be happening outside of
other network activity.

Comparing the device types, we notice differences in the dis-
tribution of the popularity and app categories. For Android, the
popularity is skewed with the first two apps accounting for 20% of
all devices. For iPhone, instead the differences in the popularity
are smoother. Interestingly, Angry Birds is top for Android but it is
20th for iPhone with a popularity of only 0.66%. We also noticed
that AdMob served more ads to games on Android than to iPhone
as eight out of the top 10 Android apps would operate offline if it
did not display mobile ads.

3.5 Ad traffic frequency
Ad traffic is, by nature, periodic, and one of the important pa-

rameters controlling it is the refresh interval, i.e. how frequently
the mobile app requests an ad. We have also seen that this traffic
is mainly static and, given the finite catalog of ads available from a
service, an object might be requested multiple times. In this section
we investigate the frequency of ad traffic considering both these ef-
fects, starting from the characterization of traffic aggregates and
then moving more to the details of the specific objects.

3.5.1 Request interval

As described in Section 2.1, different ad services adopt different
protocols to deliver and manage ads. Reverse engineering is a diffi-
cult and time consuming task so we decided to opt for a more gen-
eral approach to capture the frequency of the traffic grouping flows

4For iPhone devices the app name is usually carried in the
app_name parameter. For Android devices it can be deduced from
the app package name specified in the msid URL parameter.

348



 1

 10

 100

 1000

1  5  10  15  20  25  30  35  40  45  50

R
eq

u
es

ts
 p

er
 d

ev
ic

e

Object Popularity Rank

Android

50th perc

 1

 10

 100

 1000

1  5  10  15  20  25  30  35  40  45  50

R
eq

u
es

ts
 p

er
 d

ev
ic

e

Object Popularity Rank

iPhone

50th perc

Figure 9: Box plots of the number of requests each device

performs for the top 50 most popular objects on Android and

iPhone devices.

in time: we define an activity period as a group of concurrent flows
such that two consecutive flows flow-A and flow-B are part of the
same group if start(flowA) < start(flowB) < end(flowA).
In this way, we cluster the traffic in time and studying the inter-
leave between activity periods gives us an indication of the traffic
frequency.

In Figure 8 we report the CDF of the interleave between two con-
secutive activity periods. Each of the three classes of ad traffic is
considered individually and we also report the aggregate for com-
pleteness. We can see that Android and iPhone handsets present
similar distributions (this is true also for iPad but not reported due
to its similarity) but differences emerge between the different classes
of traffic. In fact, analytics services are less interactive than media-
tion services which typically generate multiple flows in a very short
period of time as they need to communicate both with its servers
and the ad network to report the action and obtain the ad respec-
tively (as seen in Figure 2). Despite the static nature of ad traffic,
40% of the activity periods are interleaved by less than 10 seconds
and more than 80% in less than 100 seconds.

3.5.2 Re-downloads

Given the static nature of ad traffic content, it is reasonable to
expect that the SDKs provide some caching capabilities to limit the
number of re-downloads of the objects, but instead they use stan-
dard HTTP libraries. Studying the HTTP response codes, we found
that only 5% of the requests from Android devices receive a “HTTP
304 Not Modified” reply while this accounts for only 2% of
requests from Apple devices. The limited adoption of conditional
HTTP requests suggests that, in presence of multiple requests for
the same object, it is very likely that it is re-downloaded.

In order to verify this assumption, for each object requested we
computed its popularity as the ratio between the number of devices
requesting such an object and the total number of devices that had
ad traffic. For each object ranked in the top 50, we computed the
distribution of the number of times such an object was requested by
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Figure 10: Box plots of the fraction of cumulated volume re-

lated to the 50 most popular objects on Android and iPhone

devices.

each device. The box plots shown in Figure 9 report the 5th, 25th,
75th and 95th percentile of each distribution. The median is equal
to 1 for most of the objects but their distribution is heavy tailed. In
particular, this is more notorious for Android devices, likely due to
potential bugs in the HTTP libraries as reported by [9]. Neverthe-
less, different objects present different distributions. In particular,
the objects presenting the highest number of requests (13/16th for
Android and 20/25th for iPhone) correspond to requests generated
by Angry Birds.

Figure 10 reports the distribution of the cumulated volume caused
by all HTTP requests, to the top 50 objects, as a fraction of the total
traffic generated by each device. Considering Android devices, we
can see that the volume related to the top 10 objects is limited, as
most of the devices have a median of 0.002%. However, the dis-
tributions are heavy tailed and for 25% of the devices the top 10
objects account for 1% of the total volume. Despite the fact that 1-
2% of user volume may appear to be negligible, this fraction relates
to very few objects. It is interesting that such a small set of content
can have this impact of the overall traffic of a device. Moreover,
this waste is not just related to volume as the unnecessary transmis-
sions also have energy costs.

4. ADS ANDMOBILE NETWORKS:

ENERGY IMPLICATIONS
Most mobile devices boast a 3G network interface running on

the UMTS standard, with an IP stack of upper layers protocols. In
order to maximize the efficiency of spectrum allocated to these net-
works, each terminal (or user equipment in UMTS terminology) is
associated with the Radio Resource Control (RRC) state machine
that is responsible for the actual behavior in terms of bandwidth,
power consumption and latency of the physical layer. While the
specific parameters might have different values from one network
provider to another [10], most networks define three power modes:
IDLE which corresponds to no connection; CELL_DCH (dedicated
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Figure 11: A common 3G wireless RRC state machine.

channel), the highest power state with highest throughput and low-
est latency; CELL_FACH (forward access channel) used to reduce
the latency caused by going from IDLE to CELL_DCH in case an-
other transmission occurs within a few seconds after the previous
transmission5. All promotions are based on traffic volume whereas
demotions are triggered by inactivity timers defined by the network
operators, as shown in Figure 11.

In the previous sections we have seen how ad traffic has an in-
trinsic intensity due to the frequent communications between apps
and ad networks, and we also observed that some requests lead to
a waste of traffic as it may result in objects being re-downloaded.
In this section, we will characterize and quantify the effect of ad
traffic on power consumption. We start by investigating the isola-
tion of ad traffic with respect to the RRC state machine, and then
present the power consumption results obtained using an extensive
set of active experiments in a controlled environment.

4.1 Ad traffic isolation
In Section 3.4 we have seen that some of the most popular ad-

sponsored apps are likely to use the network only to download ads.
Furthermore, a recent study revealed that 60% of the free apps in
the Android market require network access against 30% of paid
apps [1]. This suggests that ad traffic will likely be isolated, i.e.,
found when the device is not generating any other traffic. Using the
concept of activity periods as previously introduced, we can define
that ad traffic is isolated if the activity periods are i) pure - only
contain ad traffic, and ii) interleaved - the device has been silent for
some time before sending ad traffic. Due to the limitations of our
dataset, the isolation factor can be only computed without including
other non-TCP traffic such as DNS lookups so the results obtained
represent the upper bound. Moreover, since analytics services are
not strictly related to advertising, for this analysis we will consider
them separately, while grouping ad networks and mediation service
traffic into a single class.

We found that 81.1%, 68.2% and 69.7% of activity periods are
pure for Android, iPhone and iPad devices respectively. While it is
possible that some apps are actually using the network, the lower
percentages obtained for Apple devices is likely due to push no-

tifications, a background service characterized by persistent long
lived connections used by the servers to send updates to the devices
only when needed. When a device is using this service, it is com-
mon to have at least one push notification in each activity period,
even if it might not generate any traffic during that period of time.
This intuition is confirmed by the fact that filtering this traffic the
percentages of pure activity periods increase to 78.5% and 74.3%
for iPhone and iPad respectively. Interestingly, we found that 12-
20.4% of the pure activity periods contains only analytics traffic,

5There is also an optional CELL_PCH (Cell paging channel) be-
tween IDLE and CELL_FACH.
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Figure 12: CDF of the interleave for each pure activity period.

while only less than 1% has all three services. This shows that ana-
lytics traffic is not generated simultaneously with ad networks and
mediation services traffic.

For each pure activity period identified, we measured the inter-
leave, i.e. the amount of silence preceding the group of flows. In
Figure 12 we report the CDF of the interleaves separating analyt-
ics services from the other types of traffic and detailing the results
for different device types. Considering analytics services, we can
observe that the distributions are very similar between the device
types. Nearly 50% of the activity periods happen within the first 2-3
seconds from the last communication, and 94.8% within 1 minute.
Instead, ad networks and mediation services present opposite char-
acteristics. Moreover, interleaves are larger than for analytics ser-
vices, with 20% of activity periods having more than 1 minute for
iPhone devices, while 40% and 32% happen within 6 seconds.

We also note that for ad networks and mediation services the
interleaves distribution is very similar to the results of Figure 8.
Analytics services present clear differences as they are not strictly
related to ad traffic. We noticed that 80% of the pure analytics
activity periods are preceded by mixed activity periods, and that the
opposite holds for ad networks and mediation services. Overall,
we state that ad traffic is isolated and the high interleaves found
indicate that the device radio is likely to be in the IDLE power
mode when they request ad traffic.

4.2 Energy consumption of ad networks
The previous sections revealed several inefficiencies caused by

mobile ad traffic with implications on mobile networks and the bat-
tery life of mobile devices. However, the mobile network data set
does not capture the activity on the RNC or lower layer traces, so
we were not able to estimate the real impact of ad traffic on the
battery life from the network traces.

In this section we describe a set of active experiments run on a
real device with a power meter to accurately estimate the power
impact of mobile ad traffic. We take advantage of the fact that ad
traffic is generally found in isolation, so there is generally no back-
ground traffic. While the traffic analysis has exhibited the presence
of analytic services traffic, we have seen that the nature of this traf-
fic is less interactive than traffic generated by mediation services
and ad networks.

4.2.1 Methodology

We used a purpose-built app for evaluation, requesting ads from
the three most popular ad networks (AdMob, Millennial Media and
InMobi). The app only contains an ad slot at the bottom of the
screen, to avoid incurring any extra CPU, I/O, and network costs.
This allows us to focus the energy evaluation solely on the cost
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Average current consumption (mA)
Power Mode Mobile Network Wi-Fi

Airplane Mode. Idle 2.1(0.1)

Airplane Mode. Min Bright. 109.4 (0.1)

Airplane Mode. Max Bright. 140 (1.4)

Idle 3.3 (0.1) 5.4 (0.4)

Min brightness 110.6 (0.2) 118.6 (1.2)

Max brightness 141.3 (0.3) 149.4 (1.0)

Table 6: Average current consumption for a Samsung Galaxy

Nexus S. In brackets, the standard deviation.

of fetching, displaying, and refreshing ads. The ad size used was
480×80 pixels across all networks tested (standard banners).

Measurements were taken with different refresh intervals (20,
40, 60 and 80 seconds), on 3G and Wi-Fi, each done ten times
for three minutes under controlled conditions. Since we could not
present detail on the amount of ad traffic potentially offloaded on
Wi-Fi networks in our traffic analysis, we included the wireless in-
terface on the energy evaluation, as many users use Wi-Fi when
available. For 3G, the experiments were carried under good net-
work conditions on a large European operator. The network type
was 3G and the signal strength varied from 16 to 21 ASU (max
is 31). The Wi-Fi experiments were done on a public Wi-Fi ac-
cess point connected to a DSL line with background traffic. The
intervals were chosen to give a good estimate of the real cost that
publishers are adding to offline apps by including ads.

The popular Monsoon high-resolution Power Monitor was used
to measure the current consumption by the device while running the
app. To ensure that the conditions were kept constant, the bright-
ness and volume were set to the minimum level, whereas notifica-
tions were disabled and all other apps were closed. The display is
required to be active as otherwise the ads do not refresh.

4.2.2 Baseline energy consumption

Table 6 shows the energy costs in mA6 for the basic power modes
of a Samsung Galaxy Nexus S. These values are specific for the
device used in the study, and will vary for other devices. These val-
ues aim to describe the standard configuration of a modern mobile
device without any CPU and network-intense activity being exe-
cuted (only basic OS activity was allowed). As can be seen, one
of the most energy-intense resources is the display. The current
values obtained are similar to previous experiments which tried to
benchmark the energy consumption in modern mobile devices [11].
Being connected to a mobile network is more efficient than keep-
ing the device connected to Wi-Fi APs. It should be noted that the
higher variability in the results for Wi-Fi is caused by background
broadcast traffic existing in the network. Wi-Fi results are highly
dependent of the access point in use. The obtained results represent
a worst case scenario as the energy consumption of Wi-Fi clients
depends on the support of power saving mode on the access point
and the characteristics of the mobile terminal itself [12].

4.2.3 Energy cost: fetching ads under mobile net-
works and Wi-Fi

The parameters that publishers can control such as the refresh in-
terval and retrieval mechanism significantly impact the power costs.
Figure 13 shows the current expenditure for different refresh inter-
vals for the ad networks under study on both 3G and Wi-Fi. The

6To obtain power values in mW, values should be multiplied by
the voltage (4V). To obtain the impact on the battery life (assuming
that the app is running continuously), the battery capacity (in mAh)
should be divided by the current consumption.
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Figure 13: Current drain of AdMob, Millennial Media and In-

Mobi for banners at different refresh intervals and type of con-

nectivity: Mobile Networks (3G) (a) and Wi-Fi (b).

results reveal that Google’s Cloud-To-Device7 push technologies
can add some energy overhead due to their encryption mechanisms.
Nevertheless, independently of the technology, a low refresh in-
terval can more than double the current consumption (if there is
no background traffic) in comparison to the baseline measurements
described in Section 4.2.2. Importantly, the power overhead caused
by the refresh interval is more notorious on 3G than in Wi-Fi due to
their characteristic power models. Nevertheless, the results might
vary in a real-world scenario as other apps might generate other
flows that overlap, hence the power overhead is subsidized among
different flows.

Using tcpdump, we identified that publishers’ control on the re-
trieval mechanism and refresh interval used are not the only source
of energy inefficiency on devices. Usually, the HTTP/1.1 request
created by the SDK have the KeepAlive option enabled in order to
fetch several objects in the same request. Even if each ad network
relies on a single content provider as reported in Figure 7, differ-
ent objects are usually downloaded from different servers and not
transferred on a single TCP connection. In this case the KeepAlive
feature is worthless and often forces the 3G radio interface to go
from IDLE or CELL_FACH to CELL_DCH. This is the case of
AdMob (also observed in other Google’s services such as Gmail
and Google Search), in which servers and clients have a connec-
tion timeout of 6 seconds, forcing the mobile interface to remain
active (or even to go from IDLE to DCH) only to send TCP’s FIN
notification. Figure 14 shows the throughput for AdMob and Mil-
lennial Media for 3 minutes from an offline app requesting ads ev-
ery 40 seconds. We can identify small throughput peaks caused
by the FIN-ACK notifications in AdMob, whereas the active close
used in Millennial Media presents a cleaner figure. These small

7
https://developers.google.com/android/c2dm/
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peaks can immediately cause RNC transitions and energy waste
on the devices. This is the main reason behind AdMob having a
higher power cost in comparison to Millennial Media and InMobi,
both of which tend to close the connection immediately after the
transaction is completed. Nevertheless, we have seen that when the
server is the one performing the active close, as found in InMobi,
it often experiences Failure to send FIN notification promptly. If
this happens, the client will try to close the connection with the
server after 1 minute (the default fin_wait timeout, specified in
the proc filesystem) also forcing the 3G radio interface to go to a
dedicated channel (CELL_DCH) in vain as the gateway/NAT in the
mobile network might have closed the connection already. Millen-
nial Media’s client and server try to simultaneously perform the ac-
tive close, reducing such inefficiencies. This guarantees that most
of the network usage is compressed in the shortest time interval.
Interestingly, AdMob and InMobi servers identify the type of net-
work of the client to adapt the behavior of the system accordingly.
The TCP connections remain open when the phone is connected
with Wi-Fi despite the memory overhead for the servers required to
keep an open TCP connection.

The results shown in this section are the worst case scenario for
a pure offline app that does not require any network access but for
displaying mobile ads. If the app is online by nature, the power
overhead caused by ad traffic can be amortized whenever the app
requires network access for its normal activity. However, a more
detailed evaluation of the impact of background traffic requires a
good characterisation of mobile traffic for different apps which is
still an open and interesting research problem by itself. In the fu-
ture, proposals, such as SPDY8 from Googlem could offer better
efficiency in downloading resources on the Internet by using paral-
lelization and flow management to outperform HTTP. SPDY might
present an elegant solution to the problem we have depicted here,
but it will rely mostly on the global adoption of the solution in all
web servers and web browsers, something proven to be difficult
with previous proposals, such as WebM9.

5. EVALUATING IMPROVEMENTSTRATE-

GIES THROUGH ADCACHE
The mobile ecosystem is maintained by a model that encourages

publishers to (ab)use the features provided by ad networks to in-
crease their revenues. Ad traffic is usually found in isolation so
it forces offline apps to be online in order to obtain mobile ads.
As a consequence, the volume of ad traffic per user is significant;
1% of mobile users have more than 2 MB of ad traffic per day,
much of which is usually composed by objects such as images
and Javascript that are constantly being re-downloaded. Such high
download rates cause an important energy overhead, which is also
aggravated by multi-party services and an inefficient protocol de-
sign. In Section 4.2, we observed that displaying ads on an app
over a period of three minutes can more than double the power
consumption at the lowest refresh interval.

Aggressive advertising strategies have pushed some users to adopt
defensive strategies, for example, millions of users have installed
the AdFree ad blocker app on Android. However these solutions
are not ideal as they often involve changes to the hosts file to redi-
rect traffic to localhost, generating firewall rules (by iptables)
or turning off connectivity altogether. Furthermore, they are also

8http://dev.chromium.org/spdy
9http://www.appleinsider.com/articles/12/
03/14/mozilla_considers_h264_video_support_
after_googles_vp8_fails_to_gain_traction.
html
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Figure 14: Throughput for AdMob (a) and Millennial Me-

dia (b) at a refresh interval of 40 seconds. We can clearly see

the throughput peaks caused by the FIN notifications in Ad-

Mob, forcing the radio interface to change up to (or remain in)

higher power states for longer periods of time.

a major disadvantage to publishers as it completely breaks their
intended revenue model. The ideal solution is an ad delivery mech-
anism that is friendly to all the end-users, ad networks and publish-
ers.

There are two feasible approaches to reduce the traffic volume
and power overhead of ad networks: i) avoiding redundant trans-
missions and ii) reducing the number of transitions between the
power modes in mobile networks. Conceptually, ad traffic contains
static content by default, even for targeted ads. Mobile ads are not
generated in real time, they are the result of planned campaigns
by the advertisers mainly distributed over CDNs, as described in
Section 3.3.

Based on these constraints, we designed AdCache for Android
devices. The following sections will detail its architecture, describ-
ing the way it fulfils the requirements for state of the art commercial
ad platforms and their features such as user profiling. AdCache is
bandwidth and energy-aware by exploiting simple techniques such
as connectivity awareness, batching and caching. Although privacy
was not an initial objective, AdCache’s design allows preserving
users’ privacy in a similar manner to MobiAd [5] and PrivAd [6].

5.1 Mobile agent
Figure 15 describes the AdCache architecture on a mobile de-

vice. As a proof of concept, the server functionality is provided
by a mock ad network responsible for handling and serving the re-
quests from the mobile clients. The mobile agent is a continuously
running background service that prefetches ads into a data structure
and serves them locally on requests by apps at the minimum power
cost. The data structure is persistent (even when phone reboots),
and is filled completely when the agent is initially started with a
set of ads specified by the ad network and is then updated periodi-
cally. Ads are prefetched based on their Time To Live (TTL) value,
defined by the ad network to remove outdated or invalid ads.

The mobile agent acts as the coordination point for delivering ads
to apps installed on the device, making sure that no single app re-
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Figure 15: The AdCache architecture.

quests ads excessively and that radio access is given consciously.
The ads are served according to a policy defined by the server,
which is injected on the mobile agent whenever it has to be up-
dated. Among other features, the policies assign priority to a given
set of ads that takes into account the importance of some campaigns
over others.

Cache updates and synchronisation tasks are event-based, trig-
gered by satisfactory network conditions, timeouts (re-sync period
set 2 hours by default but can be customized by the ad network),
app requests, and expiration of all cached ads. These design deci-
sions have three immediate effects: i) there are no cache misses ii)
ads will not be pre-fetched if there are enough valid ads or there is
no app demand hence reducing traffic volume and iii) allows Ad-
Cache to efficiently use network and energy-intense resources by
exploiting batching techniques. The server also has the ability to
push new ads to the client if needed.

Targeted ads

AdCache includes an opt-in profile in the mobile agent which the
user is able to fully control. If they opt-in, this private information
will be used by the ad network to deliver targeted ads, otherwise,
standard ads will be delivered. Users’ data is securely stored locally
and apps do not have access to it.

For location awareness, location information is obtained using
passive methods such as Android’s Passive Location Provider10 or
mobile network information. In the latter case, AdCache delegates
the task of performing the network positioning lookups on services
such as Skyhook wireless to the server rather than adding an addi-
tional HTTP request on the device. Location is also used to update
the cache. If the user is moving and there are apps requesting ads,
the update interval is reduced dynamically to a value predefined by
the network in order to provide more relevant ads quicker to the
user if needed.

Reporting support

Statistics for the views are securely stored locally in an encrypted
database. The reports are batched and uploaded to the server dur-

10Android’s PassiveLocationProvider reports location changes ob-
tained from A-GPS or network positioning systems only if another
app is actively doing so.

ing cache updates rather than reporting them immediately. To avoid
fraudulent actions, on receiving a message from a new publisher
(based on their app package and publisher ID), the mobile agent
validates the publisher’s authenticity by contacting the ad network.
The database is secured with tokens obtained from the ad network
when starting the cache which are refreshed on each cache update.
We use a dynamic token instead of a static token to avoid reverse
engineering attacks. The downside of this is that if the client ser-
vice is killed, the token, that had been stored in memory, is lost and
the database has to be thrown away. This loss is not ideal, however
it can be considered acceptable when compared to allowing an at-
tacker (once the password is discovered) to delete and/or generate
fake reports. As a consequence, user clicks are reported imme-
diately to the server as the network interface will already be in a
connected power mode when downloading the advertised content.
This reduces the possibility of losing a click report if the service is
stopped (unless network connectivity is not available at this time, in
which case it will be cached), while also allowing AdCache to syn-
chronize the reports and update the cache. This decision is based
on the fact that click actions for AdMob (using the rule reported in
Table 3) are not popular across many mobile users. Only 4.06%,
4.34% and 5.19% of the users for Android, iPhone and iPad re-
spectively had performed at least one click on an AdMob ad. This
metric should not be confused with the click-through rate, gener-
ally used to measure the success of an online advertising campaign
for a particular website, and requires further investigation that we
would like to explore in the future. The current consumption of
performing such action on the device under study is 350 mA on 3G
and 200 mA on Wi-Fi approximately.

Smart network usage

AdCache monitors the network conditions of the mobile interface
(i.e., signal strength and type of network). This is done in order
to temporarily defer the update if the network conditions are not
ideal. In fact, the benefits of using AdCache on Wi-Fi are minor
when compared to the 3G case.

When the mobile device is connected by Wi-Fi, AdCache oper-
ates like an ordinary ad network, by fetching one ad at a time as
the power and network overhead is minimum. This is done so Ad-
Cache can deliver the most relevant ads to the user without any sig-
nificant power cost. Nevertheless, under these network conditions,
the cache attempts to prefetch fresher ads or update the metadata of
existing ads which will be served once Wi-Fi connectivity is lost.

Privacy

The privacy and security issues highlighted in studies such as [1], [13]
and [6] were considered. AdRisk [3] found that sensitive informa-
tion accessed by some SDKs included call logs, user phone num-
bers and lists of all the apps a user has installed. A side effect of
the AdCache design is that the permissions required for advertising
are decoupled from the ones required for the intended purpose of
the app. In fact, local user profiling helps to preserve user privacy
as AdRisk [3] proposes.

5.2 AdCache evaluation
To evaluate the power cost of using AdCache, we used the same

refresh intervals from Section 4.2.1 for three different type of ad:
static banner, animated banner and text ads. A fourth case in which
AdCache serves a randomly chosen type was also evaluated to em-
ulate the behavior of existing ad networks. The animated ad type
was purposely built to be particularly costly in terms of CPU usage,
thus we could establish an upper bound on cost of supporting such
a feature. We collected two sets of results, one where the mobile
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Figure 16: Current drain of AdCache with different refresh

intervals for animated and static banner ads, text ads and ran-

dom ads under different connectivity conditions: Mobile Net-

work (3G) (a) and Wi-Fi (b).

client has an empty cache (worst case), and the second with the
cache already running and with valid ads already pre-fetched (best
case). On a fresh start, 15 ads (10 image-based and 5 text-based
ads) were downloaded to the device from a mock server hosted in
the US. The time required to download all the ads on a fresh start
varies from 10 to 12 seconds on 3G, this includes the channel allo-
cation time.

As we show in Figure 16(a), AdCache has a significantly lower
average current consumption when compared to existing ad net-
works (Figure 13). The power overhead compared to the baseline
values for minimum brightness shown in Table 6 is small as a result
of batching and pre-fetching. In Table 7, we compare the current
drain of AdCache with the existing ad networks under study for
the minimum and maximum refresh interval on 3G. For a 20 sec-
ond refresh interval, the power consumption is halved when com-

pared to existing ad networks over a 3 minute period. Interestingly,
the effect of the refresh interval is not as notorious as in existing
ad networks (Figure 13) where it reduces the number of network

Ad Network
Refresh Interval (s)
20 80

AdMob
Push 242.7 (12.2) 204.6 (5.5)
Pull 233.4 (10.6) 198.8 (12.2)

InMobi 223.7 (6.8) 178.6 (12.0)

Millennial Media 225.5 (3.7) 156.4 (6.1)

AdCache
Animated 140.1 (0.6) 142.8 (2.1)
Random 139.5 (1.4) 137.8 (1.7)

Fresh Start
Text 145.1 (0.6) 136.5 (1.7)
Static 136.1 (1.6) 133.6 (1.8)

Table 7: Comparison of the average current consumption

(standard deviation in brackets) for the different ad-networks

with the maximum and minimum refresh intervals on 3G and

AdCache if the cache is empty (worst case scenario).

transactions. For a 1,500 mAh battery, this implies that if the app
was running continuously, the battery life could be extended from 6
hours to more than 12 hours. On the other hand, if the mobile agent
has prefetched ads already, the ad is displayed almost instantly at a
minimal power cost as I/O and CPU cost is negligible compared to
wireless interfaces. Likewise, the cost over Wi-Fi (Figure 16(b)) is
also slightly improved over existing ad networks. The small vari-
ability below 10 mA on the current cost for the Wi-Fi measure-
ments is caused by background traffic. In a real deployment sce-
nario, the current consumption can vary between the upper and the
lower bounds depending on the advertising campaigns, user mobil-
ity and the expiration time of the ads.

Data plans can have relatively low data allowances, thus Ad-
Cache is also important in monetary terms for the end user. Ad-
Cache does not repeatedly download the same objects as was found
with current ad networks, and also batches activity reports. In Sec-
tion 3.5.2, we saw that 1% of the user’s total daily traffic is wasted
as a consequence of the repeated downloads of objects. Further-
more, mobile operators can also benefit from AdCache as the client
communicates with the ad network less frequently, thus the amount
of signalling traffic and the implications on the scarce radio spec-
trum in the mobile network are likely to be reduced significantly as
a consequence of minimising unnecessary HTTP requests.

6. RELATED WORK
The ad ecosystem has been subject to several research studies

focusing primarily on privacy issues. MobiAd [5] and PrivAd [6]
suggest local profiling and ad serving in order to protect the user
privacy, using a third party as an anonymization stage. In these
solutions, a profiling agent receives a large selection of ads via a
third party proxy, displaying those which match the user’s inter-
ests. Clicks are also sent using third parties in order to keep the
anonymity of the user intact. However these solutions perform a
number of CPU-intensive cryptographic operations and are likely
to increase communication overhead. In [1], the authors perform
a large scale crawl of the Android app market based on the meta-
data about required permissions. They describe the mobile ecosys-
tem based on free mobile apps and the imbalance of privacy in the
ecosystem, as many apps are free and depend on targeted ads to
generate revenue [14]. In AdRisk [3] the authors found that more
than half the apps on the Android platform include aggressive ad
libraries that download and run code from remote servers, while
accessing personal information such as call logs and installed app
lists.

While a lot of effort has been taken on privacy, only a small set of
work focuses on performance issues and energy. In [4] the authors
analyzed the mobile traffic patterns of 43 mobile users across two
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different mobile platforms using packet sniffers. They find daily
traffic generation patterns of users and highlight the inefficiencies
caused by the generally small transfer size of packets. Both [1]
and [13] suggest the need to decouple the flow of information be-
tween publishers, users and ad networks to better optimize energy
consumption. Eprof [2] is the first energy profiler for smartphone
apps. It found that as much as 75% of the energy consumed by free
apps is spent on mobile advertising.

The characteristics of the current mobile stacks and the tied re-
lationship with energy management have been extensively studied
in the recent literature. Studies cover topics ranging from the low-
est level of the 3G network stack with the radio resource allocation
management [10] to the highest level of the stack with the impact
of Javascript and HTML code in web pages [15] on mobile de-
vices. Other pieces of work tried to analyze the impact of middle
boxes [16], along with other contributions such as [17] and [18].

Caching has been a popular solution for constrained systems
and networks, specially those with poor connectivity conditions.
Caching has been proposed already as an efficient way of saving
energy on mobile networks [12]. In [19], the authors aim to reduce
the bandwidth cost of mobile apps by proposing an HTTP proxy-
based caching mechanism. They also highlight the potential ineffi-
ciencies that can be found in terms of energy. In our work, we prove
the efficiency of an independent caching system using a variety of
energy measurements on 3G and Wi-Fi. AdCache also provides the
ability to separate permissions between advertising and app func-
tionality, hence enabling AdCache to be a privacy-preserving pro-
filer and advertising system.

The works described above are usually based on active experi-
ments performed on a set of smartphones. To the best of our knowl-
edge, this paper presents the first in-depth analysis of the ad net-
work and mediation services ecosystem conducted on traffic from
a real network. We did not limit our analysis to a single device
type or ad agency, but instead we consistently compared Android,
iPhone and iPad devices. We found several inefficiencies consid-
ering the wastage of both energy and bandwidth, and we designed
AdCache to limit them.

7. CONCLUSION
In this paper, we undertook the first in-depth analysis of a large

mobile ad traffic data set. Our findings confirm on a large scale
that: i) ad networks impact a large proportion of users, especially
on Android, but also on iPhone and iPad; ii) the ad ecosystem for
mobile apps is mainly dominated by Google services (e.g. AdMob,
AdWhirl and Google Analytics); iii) ad traffic can be a significant
fraction of the total traffic of the users; iv) mobile ad traffic is re-
sponsible for important energy and network overhead by forcing
offline apps to become online apps; and v) many of these requests
are redundant due to the lack of caching capabilities in the SDKs.
By taking a closer look at the popular AdMob service, we identify
that the typical session of such traffic is quite short and very similar
to the demotion timeouts used by the 3GPP network technology.

We identify a clear incompatibility of the current ad distribution
mechanisms with the quasi-static nature of ad content. During the
analysis of the data set, we have been surprised to see the impact of
the user profiling traffic. We noticed a significant number of trans-
missions to analytic services with similar energy and bandwidth
usage issues as seen in ad networks.

We demonstrate the advantages of a caching approach through
the implementation and evaluation of AdCache, a first step into re-
ducing the impact of ad traffic on battery life and controlling the
traffic generated by ad networks. We demonstrate AdCache’s via-
bility in terms of energy savings to tackle the identified issues re-

lated to ads traffic. Our future objectives go along two points, first
of which, we are planning to characterize the mobile ad ecosystem
in greater detail, specially from an economics perspective, taking
advantage of the potential of the rule set. Second, we would like
to continue researching an energy and spectrum efficient ad de-
livery mechanism by introducing more embedded logic, enabling
more offline capabilities such as user profiling, analytics support
and greater fine-grained targeted advertising.
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