Traffic Analysis with Off-the-Shelf Hardware:
Challenges and Lessons Learned

Martino Trevisan®, Alessandro Finamoref, Marco Mellia’, Maurizio Munafdf, Dario Rossi*
TPolitecnico di Torino, Telefonica Research, *Telecom ParisTech,
{martino.trevisan, mellia, munafo} @polito.it
dario.rossi @telecom-paristech.fr
alessandro.finamore @telefonica.com

Abstract— In recent years, the progress in both hardware and
software enabled user-space applications to capture packets at
10 Gbit/s line rate. However, processing packets at such rates
with software running on Commercial Off-The-Shelf (COTS)
hardware is still far from being trivial. In the literature, this
challenge has been extensively studied for Network Intrusion
Detection Systems (NIDS), where operations are per-packet
and easier to parallelize also thanks to hardware acceleration.
Conversely, the scalability of Statistical Traffic Analyzers (STA)
is intrinsically more complex as it implies tracking per-flow state
to collect statistics. This challenge received less attention so far,
and it is the focus of this work.

We discuss the design choices to enable a STA to collects
hundreds of per-flow metrics at a multi 10 Gbit/s line rate. We
leverage a handful of hardware advancements proposed over the
last years (e.g., RSS queues, NUMA architecture), and we provide
insights on the trade-offs they imply when combined with state
of the art packet capture libraries and multi-process paradigm.
We outline the principles to achieve an optimized STA, and we
apply them to engineer DPDKStat, a solution combining the Intel
DPDK framework with the traffic analyzer Tstat. Using traces
collected from real networks, we demonstrate that DPDKStat
achieves 40 Gbit/s of aggregated rate with a single COTS PC.

I. INTRODUCTION

The last years have witnessed a growing interest towards
solutions for Internet traffic processing. The engineering of
such systems is a far from trivial challenge. In fact, if Internet
services are becoming more and more complex and require
more processing power to monitor them, at the same time the
Moore law scales at a slower pace compared to the annual
bandwidth consumption rate. Traffic monitoring requires to
acquire, move, and process packets, while maintaining their
logical organization in flows. These are daunting tasks to tackle
at 10 Gbit/s line rate or more, where each packet lasts few tens
of nanosecond. Running thus a software monitor on Common-
Off-The-Shelf (COTS) hardware requires a lot of ingenuity.

The advent of both open source and proprietary packet
acquisition libraries and ad-hoc hardware solutions alleviated
the problem of the mere packets acquisition. These solutions
indeed enable to achieve multi 10 Gbit/s line rate processing
thanks to zero-copy, i.e., packets are moved via Direct Memory
Access (DMA) by the Network Interface Controller (NIC)
directly into user-space. The challenge then becomes how to
speed up the extraction of valuable information from such
a deluge of data. Software developers have explored multi-
core CPUs, Graphical Processing Units (GPUs), Network

Processing Units (NPUs), and FPGA architectures. This is
testified by seminal [1] and more recent works [2], [3],
[4] successfully scaling and optimizing multi-core Network
Intrusion Detection Systems (NIDS), where a large set of rules
have to be checked on a per-packet base. Fewer efforts have
been instead devoted in the area of Statistical Traffic Analyzers
(STAs) which instead aim to collect both basic statistics (e.g.,
TCP RTT or congestion events) and more articulated indexes
(e.g., performance for video streaming and Webpage load
time). STAs normally imply keeping per-flow state, hence they
are inherently more difficult to scale than NIDS.

In this work, we report on our experience in designing and
engineering DPDKStat, a system combining the Intel DPDK
framework for packet acquisition, and the traffic analyzer
Tstat [5], an STA offering a large number of per-flow metrics
monitored on-the-fly.! We do not aim to present another
fancy traffic monitoring tool. Conversely, we discuss system
bottlenecks and design principles to overcome them. More-
over, we evaluate DPDKStat using real traces from 2 different
scenarios (= 20,000 ADSL residential customers of a major
European ISP, and ~ 10,000 users of a university campus
network) using COTS solutions costing less than 4,000 UDS
showing. Overall, DPDKStat achieves 40 Gbit/s thanks to a
careful engineering of the trade-off behind packet acquisition,
multi-process paradigm, and NUMA (Non Uniform Memory
Access) architectures.

Summarizing, our major contributions are:

o We dissect different design choices, and evaluate them
with traces that capture workloads representative of real
scenarios.

« We investigate packets acquisition policies that guaran-
tee consistent per-flow load balancing, limit timestamp
errors, and avoid packets reordering and losses.

e« We quantify benefits of periodic packets acquisition
via SCHED_DEADLINE (+85%), hyper-threading (+20-
30%), and load balancing across CPUs (+10%).

We make available to the community both DPDKStat and
the traffic generator used in our testbed.> More details about
DPDKStat are also available in [6].

I'TCP and UDP traffic is processed at a per-packet base without reassem-
bling IP fragments, nor rebuilding the actual content transmitted.
Zhttp://tstat.polito.it/viewvc/software/tstat/branches/tstat-dpdk/

1 1 1 1 1
Moore law
1 > GPU cores
100Gbits | O CPU cores Kargus, 1™ L
] % FPGA
£ | &@nos :
o 10Gbiys | B Others s L
@] MIDeA {0 . X
@ a2 B
[4 - .
2 ~ |
& 1Gbit/s . L
g ParaSnort Koromilas | DPDKStat[
nDPI FastClick
1 Intel / L
100Mbit/s .- @ StreaMon L
T T T T T
2006 2008 2010 2012 2014 2016

Year

Fig. 1: Synoptic of related works. Circles are centered on the
year and processing rate. Radius size is a logarithmic scaling
of the number of cores employed by the system.

II. 10 YEARS OF HIGH SPEED TRAFFIC PROCESSING

Both academia and industry has invested a large effort in de-
signing efficient high speed Internet traffic processing systems.
Since seminal work capable to cope with only few hundreds
Mbit/s, different solutions passed the 10 Gbit/s “barrier”. This
is mostly thanks to the advent of advanced packet capture
libraries (compared and benchmarked in [7]) which solved the
first engineering challenge: efficiently transfer packets from
the NIC to the main memory. Some works also address the
problem to efficiently store packets on disks using COTS
for later processing [8]. The challenge than becomes how
to quickly process packets in user space, and this is usually
achieved using parallelization and multi-cores technologies.

For the sake of illustration, we represent in Fig. 1 the
most important solutions as circles centered at (rate,year)
with a radius proportional to the number of cores used.
A straight line (in semi-log scale) represents Moore’s law
exponential increase of raw processing rate, doubling every
year from the initial starting point of 100 Mbit/s. Comparison
with old systems such as Intel® or ParaSnort is only anecdotal.
Specifically, in 2015, the processing rate exhibits a speedup
close to 210 (25) with respect to the 2006 Intel system (2009
ParaSnort), well matching Moore expectations.

Notice that most of the works in Fig. 1 focus on NIDS
(empty circles), i.e., they are Bro or Suricata based solu-
tions [9]. These tools are designed to trigger alarms when
a packet matches signatures from a predefined dictionary, but
they report little statistics about the traffic activity. Thus, they
work on a per-packet base or using simple state machines, and
they are easily amenable to parallelization. However, since
pattern matching is costly (e.g., a core can cope with only
~100 Mbit/s), NIDS scalability is achieved with a large number
of GPU cores as in the case of MIDeA and Kargus [2], with
NPUs as in Koromilas [4] and DPI-S [3], or finally with
FPGAs as in Das [10] and Jaic [11]. Fig.1 also includes
solutions that, despite not being STA, are not pure NIDS
either. Specifically, StreaMon [12] is a SDN traffic monitoring
framework, FastClick [7] is an advanced software router based

3http://courses.csail. mit.edu/6.846/handouts/H 1 1-packet-processing-white-
paper.pdf

Exec. time [hr]

Max Mem [GB] 1/O rate [Mbit/s]
3 4

Avg. CPU [%]

Fig. 2: STA and NIDS performance comparison (1-core, all
tools with default configuration).

on Click, while nDPI [13] is a pure traffic classifier derived
from OpenDPI.

To the best of our knowledge, less effort has been de-
voted to study scalability issues for STAs (filled circles in
Fig. 1). Such tools comprise a smaller, yet more varied, set of
functions intrinsically more difficult to parallelize than NIDS.
In fact, STAs functions share per-flow state, leading to a
more pipelined analysis workflow than for NIDS. To culprit
these tool classes, Fig. 2 compares processing time, maximum
memory, I/O rate, and average CPU utilization when running
Tstat (a STA) and three NIDs (Bro, Snort, and Suricata) on
the same trace, using the same server, with tools in default
configuration. Tstat is faster than the three other tools, but
consumes I/O since it tracks hundreds of per-flow metrics.
Notice also how, despite tracking per-flow states, Tstat it is
lighter than Bro since it does not reassemble IP/TCP packets.
This experiment however considers the usage of a single
core which is insufficient to achieve multi 10 Gbit/s without
parallelization. In the remainder of this work, we specifically
dissect the design choices and the lesson learned to achieve
such goal.

III. DESIGN PRINCIPLES

We assume that the STA runs on a COTS hardware moni-
toring 10 Gbit/s links. We assume the monitoring system to
be equipped with n NICs, and ¢ CPU cores. Notice that
two interfaces are required for each single full-duplex link.
To cope with the load, the STA needs to balance the traffic
among different processing engines that are bound to different
CPU cores. Fig. 3 shows the different design choices to be
considered.

A. Packet acquisition and per-flow load-balancing

Goal. Several solutions have been proposed to provide efficient
packet acquisition on COTS hardware. They all solve the
problem of efficiently moving packets from the NICs to user-
space [7], [8]. However, to compute per-flow statistics, we
need to correlate packets received irrespective of the NIC
where the packets are observed. Hence, the packet acquisi-
tion library needs to offer a flow-preserving load balancing
function for correct traffic processing. This offers also the
appealing opportunity to split the traffic among the ¢ CPUs.
The primary goal is to avoid costly synchronization primitives.

Proposal. A first option is to use load balancing in software

core-1

core-2

(a) Software load balancer. (b) Direct RSS queues access.

core-b + 2

core-b + 1

core-c
core-2

core-1

(c) Buffered access to RSS queues (d) Buffered access to RSS queues
with dedicated core. with shared core.

Fig. 3: System architecture: the order is from the simplest one (left) to the most evolved and performing (right)

(Fig. 3a). This is offered by solutions such as PF_RING ZC*
where custom per-packet load balancing can be coded and
applied on the aggregate traffic received from the so called
“DNA cluster”, i.e., a group of NICs. In this case, all packets
received from the NICs are passed to the DNA cluster process,
which (i) timestamps and (ii) forwards them to the correct
processing engine. Unfortunately, this solution does not scale
as the software load balancer quickly becomes the bottleneck,
and it is non optimal in multi-CPU scenarios where the same
packet should be moved across the NUMA nodes of the system.

Modern NICs offer load balancing in hardware, e.g., via the
Intel Receiver Side Scaling (RSS) queues. Consistent per-flow
load balancing is possible with specific hashing functions [14]
offloaded to the NIC. This results in a system where packets
are stored into different RSS queues to which the STA has
direct access. In this scenario, the number of RSS queues is
equal to the number of CPU cores (Fig. 3b).

Offloading functionalities to hardware presents clear bene-
fits, but the RSS technology suffers from some limitations. For
instance, the load-balancing is performed only on IP packets
encapsulated directly over Ethernet, excluding other Layer2 or
tunneling protocols (MPLS, GRE tunnels, etc.). RSS queues
are also a scarce resource (currently, at maximum 16 for each
NIC). More important, they require careful tuning to properly
timestamp packets (see Sec. V-A).

B. Absorbing traffic and processing jitters

Goal. Packet processing time is not constant. Traffic process-
ing tools need to be engineered to minimize the average packet
processing time. However, unexpected (large) processing de-
lays typically occur due to slow I/O operations, periodic data
structure optimization, critical packet composition, etc. These
delays can lead to losses in the RSS queues since they can
only store up to 4096 packets, i.e., few tens of microseconds
at 10 Gbit/s. Similarly, unexpected or unbalanced traffic bursts
can lead to losses too. Packet acquisition libraries already
implement circular buffers to absorb such jitters. Yet, those
are in the range of 1 MB and can only absorb less than one

“http://www.ntop.org/products/packet-capture/pf_ring/pf_
ring-zc-zero-copy/

millisecond worth of traffic at 10 Gbit/s, i.e., this is a new
problem specific for very high speed monitoring.

Proposal. Our solution is to decouple each analysis module
using a large buffer (Fig. 3c). For instance, 1 GB is sufficient
to store approximately 1 second at 10 Gbit/s. This requires a
two threads system: (i) the acquisition thread extracts packets
from the RSS queues, timestamps and enqueues them to the
buffer tail; (ii) the processing thread dequeues packets from the
buffer head and processes them. Normally such design choice
would lead to expensive process synchronization. Fortunately,
lock-free shared buffer data structures using state of the
art zero-copy data acquisition are available. The presence
of acquisition and processing threads complicates the CPU
resource allocation. In fact, the RSS queues access is time
critical so it should be operated on a dedicated core, while
the processing is bound to a separate core. In summary, the
design follows an “hybrid” approach: (i) different independent
processes are attached to (a group of) RSS queues, but (ii)
each process has separate threads managing acquisition and
processing independently.

C. Efficient sharing of CPU cores

Goal. The adoption of threads requires particular attention in
addressing how frequently they have to be executed, so that
resource sharing is fair and efficient among threads in each
core. With a polling strategy, the acquisition thread fetches
data from the RSS queues as soon as they are presented
by the NIC. This improves timestamping accuracy, but never
let the thread sleep with potentially wasting CPU cycles in
a busy-loop when no packet is present. A complementary
strategy is to enforce periodic execution, which allows the
system to effectively share CPU resources between acquisition
and processing threads (Fig. 3d). Yet, this may cause packet
reordering if the packets of the same flow sit in different RSS
queues for too long, or, worse, losses in case of suboptimal
tuning.

Proposal. We suggest the use of the SCHED_DEADLINE (SD)
non-default operating system scheduling strategy offered by
the Linux kernel. SD guarantees the scheduling of a thread

within a configurable deadline J, resulting in a quasi-periodic
execution.> With appropriate sizing, a single CPU core can
be shared among two threads, with packets timestamping
accuracy and reordering that are under control. To the best of
our knowledge, we are the first to investigate the application
of SD for packet processing.

D. Flow management and garbage collection

Goal. Stateful per-flow analysis requires garbage collection.
In fact, flows may terminate without observing explicit “sig-
naling” packets. This means that a timeout policy needs to
be enforced: if no packets are observed for a certain amount
of time T,,:, the flow is considered terminated. It follows
that every AT (order of seconds) the all F' flows (order
of millions) in the flow table are checked to verify if they
need to be purged. To avoid blocking the packet processing, a
natural solution would be to implement the garbage collection
in a separate thread. However, this is impractical due to the
massive requirement of synchronization primitives it would
entail, beside further complicating threads scheduling.

Proposal. We propose to divide the monolithic garbage col-
lection operation in smaller parts. Assuming there are F' flows
to check every AT, we split the operation in M steps, each
checking F'/M flows, and invoking the garbage collection loop
every AT/M time intervals. We report a sensitivity analysis
in Sec. V-B.

IV. EXPERIMENTAL SETUP

Engineering and calibrating a software testbed capable to
achieve 40 Gbit/s is not trivial. In our case, a Traffic Generator
(TG) allows to replay pcap traces at difference speed, and
it is directly wired to a System Under Test (SUT) where
we run DPDKStat. For every run, the sustainable rate R is
empirically measured by looking for the maximum sending
rate TG can generate (progressively increasing the sending
rate at 100 Mbit/s unit) without observing any packet drop at
SUT. We declare that SUT achieves a rate R if in 5 separate
runs at the same speed we do not observe losses.

We consider two different SUT: sut-SMP (x1,500 USD)
is a single CPU architecture equipped with an Intel Xeon
E3-1270v3 @3.5GHz, with 4physical and 4 virtual cores,
launched in 2013. It hosts 32GB of DDR3-1333 RAM; sut-
NUMA (/3,500 USD) is a NUMA architecture equipped with
2 Intel Xeon E5-2660 @2.2GHz, each with 8 physical and
8 virtual cores, launched in 2012. Each CPU is equipped with
64GB DDR3-1333 RAM. Both SUT are equipped with 4 Intel
82599 10 Gbit/s Ethernet NICs, connected via a PCle-3.0 with
16 lanes (64 Gbit/s raw speed).

TG has the same hardware configuration of sut-SMP but
has also 8 SSD disks in RAID-0 to speed up pcap files
processing. To replay the traffic and control the sending rate,

SSCHED_DEADLINE guarantees also the periodic thread to not consume
more than a fraction of the period via the parameter sched_runtime. In
our system, we limit CPU time to be shorter than 10% of the period, resulting
in a stable system.

0.016
0.014 {\ 0.5 ms
\ 1 ms
0.012 \ . 2 ms
0.01 4 ms
x n
e 0.008

0.006 \
0.004 \ —_—-
0.002 .

RSS queue occupancy [pkts]

Fig. 4: Distribution of the RSS queue occupancy for vary-
ing SCHED_DEADLINE packet acquisition intervals § (sut-
NUMA with ISP-80).

we develop our own solution based on DPDK.® We aim
to benchmark our system using a workload similar to real
scenarios. For this reason we rely on replaying packet traces
rather than using synthetic traffic generators. However, public
available traces usually do not carry payload for privacy
issues, hence they are not the optimal choice to test a STA.
Conversely, we consider different traces from two operational
networks: Campus is a 2h trace collected in 2015 from
Politecnico di Torino campus network (= 10, 000 users, 7.6 M
TCP and 5.4 M UDP flows, with average packet size of 811
bytes); ISP-full is 1 h trace collected in 2014 from a European
ISP PoP (= 20,000 residential ADSL users, 3.1 M TCP and
7.7M UDP flows, with average packet size of 716 Bytes). All
traces have been collected during peak time. More details are
also available in [6].

Notice the different mix of TCP and UDP between the two
scenarios, which results in two complementary benchmarks for
the STA. In fact, UDP traffic does not require a very complex
state machine, but Bittorrent traffic (popular in ISP-full) results
in a huge number of flows.

V. HARDWARE AND SOFTWARE TUNING

We now present experimental evidences of the design prin-
ciples previously illustrated. We focus on two representative
aspects concerning hardware and software that are of general
interest, namely tuning packet acquisition, and idle-flow man-
agement.

A. Packet acquisition

RSS queues are an instrument that needs to be carefully
dimensioned. On the one hand, large RSS queues are needed to
avoid overflow and packets loss. Thus we set the RSS queues
to the maximum size (4096 packets). On the other hand, since
packets are extracted from the RSS queues in batches, we need
to control timestamp errors and avoid packet re-ordering.

We argued that is advisable to use a SCHED_DEADLINE
(SD) kernel policy, which unfortunately induces a non-trivial
sampling of the RSS queue size, as the scheduling is not

Shttps://github.com/marty90/DPDK-Replay

_ Packets
B 100004 . incurring GC
Q

£ 1000

=1}

k=

2 100

8

g g

2 10 4

3

2

3

&

Quantiles

(s, 1) (50ms, 1/100)(0.5ms, 1/10000)
Garbage collection (interval, ratio)
Fig. 5: Per-packet processing time for various settings of the
garbage collection period and size (sut-NUMA with ISP-80).

strictly periodic. Fig. 4 reports the empirical Probability Den-
sity Function (PDF) of the RSS queue size sampled when the
packet acquisition thread is woken up by the kernel: we collect
10 million samples for deadline values of 6 € {0.5,1,2,4} ms
when processing 10 Gbit/s traffic. By design, § = 0.5ms in-
terval should guarantee sub-millisecond timestamp precision,
which is accurate for most cases.

Now, consider packet reordering. Let us suppose client
requests and server responses are received at NIC-¢ and NIC-
7, respectively. The per-flow RSS mechanism exposes them
consistently to the same process. However, if the packet ac-
quisition thread visits first NIC-j and then NIC-4, an artificial
out-of-sequence would be generated. To avoid this, one must
guarantee that the processing period of RSS queues is shorter
than the client-server RTT, so that client packets are already
being removed from NIC-¢ when server packets are received at
NIC-j. With practical Internet RTT that are higher than 1 ms,
a deadline of 0.5 ms makes this event very unlikely.

Finally, tail of RSS occupancy distribution is especially
important as it correlates with packet losses. With RSS queues
of 4096 packets (the maximum allowed), we never recorded
any loss in our (relatively short) tests. Yet we can estimate
the loss probability. Rather than modeling the packet arrival
process at the RSS queue, we opt for a macroscopic approach,
and fit the RSS queue size observations in Fig. 4 with an ana-
Iytic model. We found a lognormal distribution having a good
agreement with the experimental data. From the lognormal
fit, we can extrapolate the RSS queue overflow probability,
i.e., P(Q>4096). For 6 = 4ms, this happens with probability
7.2-1071°, By reducing § to 0.5ms, the overflow probability
becomes smaller than 10~2°.

B. Bounding packet processing time

Large packet processing time has a particularly severe effect
since, during such time, packet loss can happen in the large
buffer. In Fig. 5, we report packet processing time samples,
when no particular optimization is introduced (blue points -
left part of the figure): clear and periodic outliers appear with
packet processing time up to 10 ms. These are due to garbage
collection (GC) operation that happens periodically.

To control the occurrence of outliers, we divide the mono-
lithic GC in smaller fractions that occur more often. Denoting

with (AT, M/F) the GC settings, Fig. 5 shows the original
setting (5's, 1) that scans the entire flow table every 5 seconds,
and two settings where both the period and the fraction are
divided by the same factor: namely, 100 in the (50 ms, 1/100)
case and 10,000 in the (0.5 ms, 1/10,000) case. The plot reports
horizontal reference lines for 75th, 95th and 99th percentile
statistics computed over 106 samples.

Comparing (5s, 1) to (50 ms, 1/100) we see that the outliers
become more numerous (by a factor of 100) but the maximum
processing time reduces (roughly by the same amount). Out-
liers disappear for (0.5ms, 1/10,000), which happens since
the number of flows to be processed by each GC event is
now small enough. Observe that the 99th percentile grows,
which happens since the number of GC events is large enough
to impact the 99th percentile. In a nutshell, the per-packet
maximum processing time is now bounded, and exploiting a
large buffer between acquisition and processing (Fig. 3c-d)
allows to absorb processing jitters.

VI. EXPERIMENTAL RESULTS

We now experimentally evaluate the final DPDKStat design
on different systems and configurations.

A. Periodic acquisition and hyper-threading

Let us focus on sut-SMP first. Fig. 6a shows the maxi-
mum sustainable rate versus the number of parallel processes.
Results compare polling (dashed line) with the SD periodic
(solid line) packet acquisition policies. Policies have a direct
impact on the how to bound processes to the available cores.
In particular, as sketched on the top part of Fig. 6a, when
using polling, the best performance is obtained when packets
acquisition (A) and processing (P) threads run on dedicated
cores (either physical or logic), while it is counter productive
if the two threads share the same core. This instead does not
occur when using the SD policy.

Both policies present similar performance up to 2 instances,
with a small advantage for polling in the single instance case
(as 2 physical cores are used). When using more instances,
SD presents large performance improvement with respect to
polling, a trend maintained also at full capacity. Overall, the
system achieves 21 Gbit/s throughput without losses, about
twice as much as system performance under polling. This
is important to highlight since the system only has only 4
physical cores.

Hyper-threading (HT) yields also remarkable performance
speed-up. Compare the 4 vs 8 instances under periodic SD
acquisition: running twice as many instances in the same
amount of silicon yields +30% performance improvement.
Conversely, HT gains are limited using polling. Despite hyper-
threading yields benefits in the 4 instances scenario, gains are
completely offset in the 8 instance scenario due to increased
contention. This confirms that polling is not the best strategy
for packet acquisition if the SD policy is available.

B. Combining different CPUs

We now consider sut-NUMA where NICs are connected to
CPUL. In our setup, all four 10 Gbit/s interfaces are connected
to the same I/O Hub and then to the same CPU.

1 instance 2 instances 4 instances 8 instances

periodic PMY[PAL_| PAPA PA[PA[PA[PA PA[PAPAPA

¢ PAPAPAPA

. hy[PTA PIA[P[A P[P|P|P [PA[PA[PAIPA]|

p°||,ngeogl [AT T] [PTATPTA] lAIAlAIA| e

A = acquisition thread P =processing thread
=]
g . — . . . §0
2 o] Tgofukde > hua
<] ---%-- Polling HTGO' j z
ain =)
2 15 HT L7
~ T <
o e T o 2]
) 10 4 t Q‘
B
<

g s HT HT | 2
a @)
w
g o0 : : : : X
= 2 4)
Number of DPDKStat Instances ¥

Fig. 6: DPDKStat processing rates using ISP-full trace:

In this scenario, we have an additional degree of freedom in
terms of core allocation policies. As schematically represented
in top of Fig. 6b, we can either (i) use all cores of CPU1
(dashed line), which is closer to the NICs, or (ii) balance the
load across CPUs (solid line). In these tests, hyper-threading
is disabled and we run all processes on the 16 physical cores.

As for the previous analysis, throughput scales linearly with
the numbers of cores, and the system successfully reaches
40 Gbit/s with no packet losses. Interestingly, the system is
slightly faster when allocating processes on both CPUs rather
than filling CPU1 first (up to +12% in the 4 instance scenario).
Potentially the system could be able to process even more
traffic (e.g., enabling HT) but unfortunately we cannot test
this hypothesis since (i) our testbed is limited to 40 Gbit/s
and (ii) Intel NICs offer a maximum of 16 RRS queues
(thus maximum of 16 processes). We can however assess HT
gains to hold: in particular, when binding all 16 processes to
run only on the 8+8 cores of CPUl with HT enabled, we
achieve 24 Gbit/s, corresponding to a +20% of performance
improvement with respect the 8 instances scenario reported in
Fig. 6b. This gain is lower than what obtained from sut-SMP,
possibly due to the different HW specs. Even if not possible
with our hardware, it would be interesting to check different
allocation policies where multiple NICs are connected to
different I/O Hubs and CPUs.

VII. CONCLUSIONS

We reported our experience in the design, implementation
and benchmarking of a system for traffic analysis to process
40 Gbit/s with COTS hardware. We argued that applications
must leverage large intermediate buffers to absorb variable
processing times and avoid packet losses. We found periodic
packet acquisition policies to be preferable over traditional
polling solution, with the SD scheduler offered by the Linux
kernel being amenable of precise buffer control with no packet
losses when properly combined with RSS queues. Hyper-
threading offered a sizable gain (20%-30%), while process
allocation over multiple NUMA nodes furthered improve
performance (10%). Overall, we demonstrated that with a
careful design is possible to achieve multi 10 Gbit/s without
specialized and expensive hardware.

o1 2i
cation PHHHHH MHHEH

ai 8
allocation | EEEE

ceut fist EHHHH BEHEEH MUEMEHH EEERHH REER a

CPU1 CPU2 CPU1 CPU2 CPUl CPU2 CPUl CPU2 CPUl CPU2 CPUL CPU2

WMi=core allocated =core free

45
40
35¢
30r
25r
20
15¢
10+

L Processes load-balanced across CPUs —e—
Processes on same CPU if possible ---%---

1 T10% load 1
balance gain -

Max Sustainable Rate [Gbit/s]

0 L L L L 16

1 2 4 8 12
Number of DPDKStat instances

(a) sut-SMP and (b) sut-NUMA (no hyper-threading)

ACKNOWLEDGMENTS

This work was carried out at LINCS (http://www.lincs.
fr/) and was supported by the WWTF Agency through the
BigDAMA project and by NewNet@Paris, Cisco’s Chair
“NETWORKS FOR THE FUTURE” at Telecom ParisTech (http:
/lnewnet.telecom-paristech.ft/).

REFERENCES

[1]1 X. Chen et al., “Para-Snort: A Multi-thread Snort on Multi-core IA
Platform,” in PDCS, 2009.

M. A. Jamshed et al, “Kargus: A Highly-scalable Software-based
Intrusion Detection System,” in ACM CCS, 2012.

K. NamUKk et al., “A Scalable Carrier-Grade DPI System Architecture
Using Synchronization of Flow Information,” IEEE JSAC, vol. 32,
no. 10, pp. 1834-1848, Oct 2014.

L. Koromilas et al., “Efficient Software Packet Processing on Heteroge-
neous and Asymmetric Hardware Architectures,” in ACM/IEEE ANCS,
2014.

A. Finamore et al., “Experiences of Internet Traffic Monitoring with
Tstat,” Network, IEEE, vol. 25, pp. 8-14, 2011.

M. Trevisan et al., “Dpdkstat: 40gbps statistical traffic analysis with
off-the-shelf hardware,” in Tech. Rep., 2016. [Online]. Available:
https://www.telecom- paristech.fr/~drossi/paper/DPDKStat- techrep.pdf
T. Barbette et al., “Fast Userspace Packet Processing,” in ACM/IEEE
ANCS, 2015.

V. Moreno et al., “Testing the capacity of off-the-shelf systems to store
10gbe traffic,” IEEE Communications Magazine, vol. 53, no. 9, pp. 118—
125, 2015.

H. Jiang ef al., “Scalable High-performance Parallel Design for Network
Intrusion Detection Systems on Many-core Processors,” in ACM/IEEE
ANCS, 2013.

A. Das et al., “An fpga-based network intrusion detection architecture,”
IEEE Transactions on Information Forensics and Security, vol. 3, no. 1,
pp. 118-132, 2008.

K. Jaic et al., “A practical network intrusion detection system for inline
fpgas on 10gbe network adapters,” in 2014 IEEE 25th International Con-
ference on Application-Specific Systems, Architectures and Processors.
IEEE, 2014, pp. 180-181.

G. Bianchi e al., “Streamon: A software-defined monitoring platform,”
in ITC, 2014.

L. Deri et al., “ndpi: Open-source high-speed deep packet inspection,”
in TRAC, 2014.

W. Shinae and P. KyoungSoo, “Scalable TCP session monitoring with
Symmetric Receive-Side Scaling,” KAIST, Daejeon, Korea, Tech. Rep,
2012.

J. Lelli et al., “Deadline scheduling in the linux kernel,” Software:
Practice and Experience, 2015.

[2]
[3

—

[4

[l

[5

[t

[6]

[7

—

[8]

[9]

(10]

(1]

[12]

[13]

(14]

[15]

