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Abstract—Mobile network operators collect a humongous
amount of network measurements. Among those, sector Key Per-
formance Indicators (KPIs) are used to monitor the radio access,
i.e., the “last mile” of mobile networks. Thresholding mechanisms
and synthetic combinations of KPIs are used to assess the network
health, and rank sectors to identify the underperforming ones. It
follows that the available monitoring methodologies heavily rely
on the fine grained tuning of thresholds and weights, currently
established through domain knowledge of both vendors and
operators.

In this paper, we study how to bridge sector KPIs to reflect
Quality of Experience (QoE) groundtruth measurements, namely
throughput, latency and video streaming stall events. We leverage
one month of data collected in the operational network of mobile
network operator serving more than 10 million subscribers. We
extensively investigate up to which extent adopted methodologies
efficiently capture QoE. Moreover, we challenge the current state
of the art by presenting data-driven approaches based on Particle
Swarm Optimization (PSO) metaheuristics and random forest
regression algorithms, to better assess sector performance. Results
show that the proposed methodologies outperforms state of the
art solution improving the correlation with respect to the baseline
by a factor of 3, and improving visibility on underperforming
sectors. Our work opens new areas for research in monitoring
solutions for enriching the quality and accuracy of the network
performance indicators collected at the network edge.

I. INTRODUCTION

It is well known that mobile carriers are facing an explosion
of data service demand. According to recent estimates [9],
mobile data traffic will increase 8 times by 2020 while video
services will represent more than 75% of the overall traffic.
At the same time, the number of connected devices such as
smartphones, tablets, vehicles, and Internet-of-Things objects,
is expected to double, accounting to 1.5 mobile devices per
capita.

This growth challenges operators, so that they have to rad-
ically rethink their network structure in order to keep offering
good Quality of Experience (QoE) to their customers [17] in
a ever-evolving mobile applications ecosystem. It follows that
efficient network monitoring and engineering is paramount.

Currently, the health of the network is mostly monitored at
the edge via the so-called Key Performance Indicators (KPlIs),
i.e., passive measurements periodically collected from network
radio access elements (i.e., sectors, towers, and controllers)
to monitor both wireless channels and backhaul performance.

Operators complement passive measurements with drive tests
and controlled field experiments for fine-grained benchmarking
and root cause analysis [2], [21], [24], [25], [28].

Assessing KPIs and per customer QoE for the whole
network at scale is a daunting task: cellular networks are
composed of hundreds of thousands of elements (e.g., sectors,
cell towers, radio controllers, etc.), daily used by millions
of customers using an heterogeneous set of applications. In
practice, there is the need to consolidate multiple metrics
into single performance values that reflect network elements’
health. Considering sectors, such value is commonly referred
to as hotspot score: the higher the score, the more ‘“hot”
or problematic a sector is [2], [30], [35]. The hotspot score
combines multiple KPIs related to failures, signaling, cov-
erage, voice, data availability, congestion, etc., into a single
performance index, normally used to objectively rank sectors.
In this way network teams can prioritize troubleshooting and
interventions to address performance bottlenecks, understand
and forecast current demand, define planning stategies, etc.

The methodology to combine KPIs into a single metric has
been established by equipment vendors and operators based on
logical decisions, Service Level Agreements (SLAs), and con-
trolled experiments such as drive tests and field tests [3], [12],
[22], [28], [34]. However, it remains an empirical approach,
founded on deep domain knowledge fine-tuned over the years.

While the current methodology addresses some of the
operators’ current needs, it suffers from two main limitations.
Firstly, it is unknown whether the current scoring function
truly reflects user experience. Secondly, the aforementioned
methodology lacks flexibility, as it obeys to a static picture of
the users’ and network’s needs. For instance, in the 90s, the
quality of the voice network used to be the most significant
factor to improve but, with the roll out of Voice over LTE
(VoLTE), focus will further steer towards data services. Such
perturbations in the network equilibrium require (potentially
significant manual) effort from vendors and operators to iden-
tify a novel configuration of KPIs capabile to reflect the
new network scenario. In a nutshell, there is the need for
a methodology that can easily cope with such service and
demand changes, and technology evolution.

In this paper, we tackle the aforementioned problems by
proposing a data-driven framework that improves monitoring
flexibility with respect to state of the art solutions. We leverage
data provided by a large mobile operator serving more than 10
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Fig. 1. Sketch of a mobile network. Notice that each tower might house
multiple sectors.

million subscribers, and we extensively study how to combine
KPIs to create rankings that better capture underperforming
sectors. Furthermore, we target to capture individual QoE com-
ponents that affect users’ experience such as web throughput,
latency and video stalls. Our results indicate that the resulting
ranking correlates three times more than the currently used
method, hence offering a better vision on underperforming
sectors and their relation to user experience.

II. MONITORING NETWORK KPIS

Fig. 1 sketches the architecture of a 4G mobile network.
The radio access consists of hundreds of thousands of compo-
nents (e.g., sectors, towers, and controllers). Those compose
the mobile network “last mile”, and bridge the users’ devices
with the core network, which enables access to voice calls
and the Internet. To support troubleshooting and optimization,
the vendors provide monitoring platforms to (passively) collect
KPIs from radio access network elements and backbone links.
To simplify the monitoring complexity, KPIs normally are
aggregated over time (with periodicity varying from minutes
to hours) and users.

There is no definitive list of KPIs. However, through the
joint effort of vendors and operators, it is easy to identify a
set of KPIs whose importance is acknowledged by multiple
parties [2], [12], [21], [24], [34]. Table I lists some examples.
We can categorize KPIs into five different groups:

e Signaling: These KPIs are mostly related to faults such
as failure to establish a Radio Access Bearer (RAB), or
Radio Resource Control (RRC), or the fact that the sector
cannot efficiently reach the radio controllers.

e Voice: These KPIs capture failure to establish or maintain
a voice call.

e Data availability: These metrics reflect the availability of
high-speed data channels (such as HSDPA/HSUPA) at
any given time or the number of data-active connected
devices.

e Data Congestion: These metrics capture the fact that the
capacity was reached. For instance, the average number of
users queuing to get an HSDPA/HSUPA channel, or the
number of times a data connection had to be dropped to
make room for a voice call. Furthermore, they indicate the
percentage of time that the radio was active transmitting
data (radio utilization).

e Radio: Radio KPIs have to do with interference, power
statistics, measured wireless noise, signal conditions, etc.

KPI Thres. Category

Failed RRC/RAB requests ratio > 5% Sienali

Signaling failure > 1% 1gnaiing

Call setup failure rate > 2% Voice

Call drop rate > 5%

HSDPA/HSUPA session setup success % | < 90%

Average Users Queuing > 2 Data

Time Slots Transmitting > 80%

Noise Rise > 10db Radio
TABLEL  EXAMPLE OF SOME KPIS AND THRESHOLDS THAT

INDICATE POOR QOE. NOTICE THAT THESE ARE VENDOR-RECOMMENDED
VALUES AND, THUS, THEY MIGHT DIFFER FROM THE ONES USED BY THE
OPERATORS.

A. Thresholding individual KPIs

The primary use of KPIs is to enable operators to monitor
the health of the network and to quickly identify bottlenecks.
Therefore, it is natural to use KPIs as a way to flag network
conditions that deteriorate below an established performance
limit [2], [3], [35]. As a result, for each KPI, a threshold has
been set. Such thresholding mechanisms are widely used in
the industry, and allow network planners and radio resource
operators to focus their attention where it is required. Table 1
shows examples of such thresholds.

Default threshold values are proposed by the equipment
vendors, while operators further fine-tune them based on
their experience, objectives, and domain knowledge. Therefore,
significant investment is made through drive tests, controlled
experiments, and A-B testing in order to identify performance
bottlenecks, and how these relate to the KPIs and thresh-
olds [3], [12], [22], [28], [34].

B. Combining different KPIs

While establishing thresholds for each KPI enables a fine-
grained vision of specific problems, each network element is
associated with hundreds of metrics. It is then desirable to
consolidate measurements into a single performance index so
to i) quantify the “health” of each network element, ii) easily
assess the whole network status and trends and iii) narrow
down on sites that need attention.

An example of such indices is the hotspot score [2], [30],
[35], which represents how “hot” or problematic a given sector
is. It is a weighted combination of thresholded KPIs related to
signaling, voice, data availability and data congestion:

s, =5 (Ko, W,t) = > w; - H (kpi — t:), ey
i=1

where b is the sector under study generating n KPIs collected
in the vector k;. The KPIs are associated to weight w
and threshold t vectors, while H(-) is the Heaviside step
function which outputs 1 when the KPI value k;; reaches
the corresponding threshold ¢; and O otherwise. The higher
the score s;, the more “hot” the sector b is. In a nutshell, a
hotspot score is a linear combination of the weights associated
to KPIs that trigger.

Notice also that, since KPIs are gathered periodically, s;
is time dependent, but we avoid to express it in Eq. 1 for
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Fig. 3. The 150 sectors with the worse hotspot score and the type of KPIs
that triggered it.

readability. This means that individual s, values can be further
combined (e.g., simply accumulated) to reflect performance
over a longer time span. Sectors that exhibit high scores
for a long period of time (e.g., a few days or even weeks)
can then be flagged for intervention (such as changing the
configuration, fixing possible faults, adding capacity, or even
upgrading the whole site to a newer technology like 4G).
However, when referring to a hotspot score in the following,
we will consider the values computed using KPIs gathered at
the baseline periodicity of the monitoring system, i.e., one hour
for the network under study.

C. Challenging the state of the art

To better understand the hotspot score dynamics, let us
consider a few examples related to the whole set of 3G sectors
of a real mobile network operator serving a country with
over 10 million subscribers (see Sec. IV for more details).
Fig. 2(a) reports the fraction of sectors having a certain hotspot
score for an off peak hour. We consider only the KPI values
within this hour to create per-sector scores. As expected, when
the network is lightly used, only a very small fraction of
KPIs trigger with a maximum score of 2 (i.e., not critical
for performance). Instead, the scenario significantly changes
when considering the peak hour as reported in Fig. 2(b). The
distribution is bimodal, with a cluster of sectors having a score
higher than 8.

Fig 3 shows 13 of the important KPIs (grouped in sub-
classes) for the worse performing 150 sectors out of tens of
thousands in the network.! Columns are associated to sectors,
sorted by decreasing score values (worse performing sectors
are on the left), while colors are used to associate KPIs
into categories (colored cells highlight which KPI triggers for
which sector).

As previously introduced, the hotspot score is a mixture of
signaling, voice, and data KPIs. Among the three, typically
signaling issues have the highest weights since they can
prevent utilization of voice and data. We can observe how
those KPIs (Fig. 3 top) trigger more than the remaining ones.
From left to right, we find sectors with signalling issues,
followed by the ones with poor voice quality, and finally the
ones that are congested. Voice problems are also highly valued
due to the traditional service model of mobile operators, and
due to the fact that users clearly perceive voice failures when
they occur. Finally, data issues and congestion are given the
lowest priority. Interestingly, the worse 60 sectors extensively
trigger both voice and data KPIs, while for the rest there is a
predominance of data KPIs.

The previous figures are clear examples that state of the art
KPI analysis is useful to spot critical sites. However, this comes
at the cost of a very rigid, static and empirical methodology
for which we see a number of issues. First of all, it is unknown
up to which extent the adopted approach reflects QoE as,
to the best of our knowledge, no quantitative analysis has
been performed. Secondly, even assuming the hotspot score
function is properly configured, current techniques require a
significant (domain knowledge and manual) effort to keep tools
at pace with the constant evolution of Internet services and
new technologies. Finally, while the hotspot score provides
rankings of overall performance, it does not provide any
indication about application specific-QoE.

One could argue that application-specific QoE is best
captured through its own KPI. However, this has a clear
overhead: monitoring application performance in a large-scale
cellular network requires either the deployment of middleboxes
that are capable of interpreting application performance by
analyzing the (mostly encrypted) traffic of millions of users, or
it requires collaboration with individual application developers
in order to share their KPIs. Therefore the question we try
to answer is: could we use network KPIs that are already
collected to monitor the health of the network to get insights
into app performance?

We believe there is the need to focus on network per-
formance monitoring methodologies that i) shed light on the
quality that people experience when interacting with specific
data applications (e.g., web or video) and ii) can adapt to the
mobile network dynamics. Hence, in this work, we address the
following two challenges:

e We study hotspot scores using data collected from a
real mobile network serving over 10 million subscribers.
Specifically, we investigate up to which extent the used
threshold and weighting mechanisms are sufficient to
identify underperforming sectors.

IWe cannot reveal the exact list of KPIs nor the exact number of sectors
due to their sensitive nature.



e We provide new methodologies to enable us to gain
some visibility on underperforming sectors. Specifically,
we want to leverage the vast amount of data collected to
create an automated data-driven framework capable to go
beyond current domain knowledge and empirically-driven
approaches.

III. A DATA DRIVEN APPROACH TO KPIS ANALYSIS

We assume to have a set of KPI values per sector that we
want to match with specific QoE metrics that are affected by
the performance of the edge-network, such as web throughput
and latency or video performance. In this section, we examine
how we can use the KPIs to extract a score that better matches
the groundtruth. Based on Eq. 1, we identify two possible
directions of exploration. On the one hand, we can keep the
already defined hotspot formula, but create an optimization
engine to better tune its parameters: the weights and the
thresholds. On the other hand, we can create a new formula
or an implicit model to combine the same input KPIs.

A. Optimizing the current score function

As mentioned, the most straightforward mechanism to
better relate a given groundtruth g and the scores s is by
optimizing the thresholds t and weights w involved in the
calculation. To relate g and s, we can use standard correlation.
However, in our application, we are not interested in the raw
quantities in g and s, but rather in the sector rankings they
define. In fact, the two quantities could lie in different ranges
or have a monotonic non-linear relation and still produce the
same sector ranking. Therefore, a natural choice to measure
the correlation between g and s is the Spearman’s rank
correlation coefficient [33], often called Spearman’s p. The
Spearman’s p is only affected by changes in the rankings of
the input variables, and is thus invariant to scale, location, and
monotonous non-linear relations. Its output ranges from —1
(perfect reverse ranking) to 1 (exact same ranking).

Having defined the function relating g and s, we can now
formulate our problem in terms of a classical optimization
problem [6]: we want to find the weights w and thresholds
t that maximize

p(s, g), )

where s = [$1,...8y,) and g = [g1,...9m] are vectors
collecting all m sector scores and ground truth measurements,
respectively. Notice that, as the values in w and t are real
numbers, we have a potentially infinite number of such com-
binations.

Given that the calculation of p is not directly differentiable
(due to the ranking operation), and that it is computationally
cheap (essentially involving two vector sorting, one vector
subtraction, and one vector multiplication), we decide to
solve the previous optimization problem with a Metaheuristic
algorithm [26]. Metaheuristics conform a general algorith-
mic framework for addressing optimization problems. Un-
like classical optimization algorithms and iterative methods,
metaheuristics make few assumptions about the optimization
problem being solved, and can thus be applied in a variety
of problems, including problems with non-differentiable func-
tions. Metaheuristics allow us to define our own optimization
function, while they provide a way of exploring the parameter

space (thresholds t and weights w) in a structured and effi-
cient way. Despite being approximate and non-deterministic,
metaheuristic algorithms can efficiently explore the search
space and provide near-optimal solutions within a reasonable
amount of time [6], specially if the optimization function is
not computationally expensive (as it is in this case). These
methods are often inspired by processes occurring in nature,
such as Darwinian natural selection, annealing, and collective
behaviour of ants [5].

1) Particle swarm optimization (PSO): Particle swarm op-
timization (PSO) [32] is a population-based metaheuristic for
solving continuous and discrete optimization problems [6].
PSO has recently gained increasing popularity among re-
searchers and practitioners as a robust and efficient technique
for solving difficult optimization problems. It makes few or no
assumptions about the problem being optimized, can search
very large spaces of candidate solutions, and can be applied
to problems that are irregular, incomplete, noisy, dynamic,
not necessarily differentiable, etc. (see [6], [10], [32] and
references therein).

PSO operates by having a population of candidate solu-
tions, which are metaphorically represented as particles. At
each iteration, these particles explore the search-space accord-
ing to their current positions and a velocity towards a goal.
They iteratively calculate the fitness p corresponding to their
current position, and update the latter according to the available
knowledge of the search space. The movement of a particle
is affected by the best position it has found but, in addition,
it is also affected by the best known positions discovered
by other particles [10]. Moreover, particle movements are
not deterministic, but partly stochastic, thus facilitating the
exploration of the search space.

Before delving into the details of our PSO algorithm, we
first need to define what corresponds to a particle’s position,
which we will denote by the vector x;. Specifically, in our case,
the position will correspond to the 2n weights and thresholds:
x; = [w, t]. With that, we see that we can easily constrain the
search space with some domain/intuitive knowledge, imposing
upper and lower bounds for the particles’ positions. For the
weights, we define them to be —1 < w; < 1 (a resulting
weight of zero means that the triggered KPI does not influence
the ground truth whereas values above or below zero contribute
positively or negatively towards the score). For the thresholds,
for each KPI, the minimum and maximum over all sectors is
used such that min(k;) < ¢; < max(k;). When a particle exits
the search space, its position is reset to a random location
inside the established bounds.

Algorithm 1 details the PSO functioning. First of all, we
initialize 7 particles P; with random positions x, random
velocities v, and lowest possible personal fitness p = —1.
Next, we start iterating, with a maximum number of iterations
A. When iterations are finished, we return the best found corre-
lation p* and position x* which, as mentioned, comprises the
best found weights w* and thresholds t*. The first inner loop
of Algorithm 1 checks every particle’s fitness by computing
the Spearman’s p. A particle ¢ updates its best known location
x; and found correlation p} if the latter has improved over
the previous value the particle had. The second inner loop
performs the actual search towards a better solution.



Algorithm 1: Particle swarm optimization algorithm
basics.

Input: The set of KPIs k, a scoring function S, the ground truth g, a fitness
function p, and position bounds I".
Output: Best found correlation p*, weights w* and thresholds t*

Parameters: Maximum number of iterations A, number of particles in the
swarm 7, and mutation probability c.

// Initialize particles at random with correlations p* = —1
P« Init();
/I Tterate
for I € [1, A] do
/1 For each particle P; = {x;,v;,x}, p; }
for i € [1,7] do
/I Calculate p in the current position
w,t < X;;
for b € [1,m] do
‘ sp < S(ky, w, t);
end
pi = p(s, g);
/I Update if better
if p; > p7 then
| Pl X} pivxi
end

end

// For each particle P;, identify the P’ particle in its

/I neighbourhood having the highest p

P’ + GetNeighbors(P);

/I For each pamcle Pi = {xi, Vi, xl ,p;} and

/I best neighbor 73 = {xj,v;,x},p}}

for ¢ € [1, 7] do
/I Compute new velocity using random vectors u
Vi =X" (Vi+¢1u1 ® (x] —xi) + p2u2 ® (x] — xi)) ;
/I Mutate velocity components with probability o
v; < Mutate(o,v;);
/I Compute new position
X; =X+ Vi
/I Constrain the particle within the desired bounds
x; < Constrain(T',x;);

end

end

1/ Idemlfy the particle j with the best correlation P
p VV t Py Xy

return p*,w*,t*

best

The first step in the second inner loop is looking for
promising positions found by the particle’s neighbours. To fa-
cilitate exploration, it is common practice to consider different
interactions between the particles, grouping them in so-called
neighbourhood topologies [6]. In our implementation, particles
are grouped following a ring topology (Fig. 4). Therefore, the
neighborhood of a particle only consists of two other particles.
Particles that are neighbors in the ring collaborate together and
influence each other. This implicitly creates small groups of
particles that explore different parts of the search space, while
the ring itself is ultimately pulled towards the best known
solution [10]. In the example of Fig. 4, particle A will be
influenced to move towards particle G (as it has found a
solution with better correlation), whereas particle B will move
towards particle C. Particle G will keep moving towards the
same direction.

The next step in the second inner loop 1 updates the
particles” velocity?. The new velocity of a particle P; (v;)
is influenced by the current position x;, the distance from the
position with its best known fit x}, and the distance from the
best known fit of the closest particle x7. To further enhance
the exploration capabilities of particles, the velocity vectors
defined by x; —x; and x} —x; are component-wise multiplied

2Notice that a velocity vector in more than one dimension has a modulus
and an angle. Therefore, it also carries information of direction.

Fig. 4. Swarm of 7 particles and the Spearman’s p of their best discovered
position. Each particle movement is influenced by its own best found position
and, at the same time, is also guided toward the best known position of its
two neighbours.

(®) with random vectors u; and ug, formed by uniformly-
distributed random values between 0 and 1.

Constants y, ¢1, and ¢ are pre-set following the so-called
Clerc’s constriction method [10], which is common practice in
the PSO literature. These constants control the behaviour of the
particles, and allow an elegant and well-explained method for
preventing explosion and ensuring convergence [32]. In our
implementation, to prevent the stagnation of the swarm and
to facilitate escaping from local maxima, a further random
mutation of the velocity components is employed [16]. For
that, we use a small probability a.

According to Algorithm 1, we need to define three pa-
rameters: the number of iterations A, the number of particles
7, and the mutation probability «. From a theoretical stand
point, the larger the value of A and 7, the higher the chances to
find globally optimal solutions [10]. However, an unreasonably
high value of those parameters could harm the efficiency of
the algorithm (in terms of computation time). In practice, we
found that, with a ring of 7 = 100 particles, « = 0.001
and A = 500 iterations, we converge towards a solution that
does not significantly improve if we wait longer or perform
additional trials. Fig. 5 shows the sensitivity of the correlation
p with respect to the number of iterations. The figure also
shows that, for 500 interations, only unreasonable settings of
7 and « produce non-optimal results. We empirically find these
settings to correspond to 7 < 50 and o > 1073, Therefore,
we set o = 1073,

B. Improving over the current function

Until now, we have only discussed how to optimize the
default weights and thresholds used in the scoring function
of Eq. 1. However, such function could be limited by the
application of the thresholds, which hide the raw “analog”
KPIs value. Thus, we could potentially significantly improve
the correlation between g and s by using the richer information
in the raw KPI values. We envision two alternative hotspot
score functions.

Linear combination of raw KPIs: this simply consists in
removing the thresholding from Eq. 1, such that

Sy (kp, w sz i 3)
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Fig. 5. Sensitivity of PSO with respect to number of iterations considering
different swarm sizes 7 (a) and mutation probabilities a (b).

To avoid having heavily asymmetric weights, we however need
to normalize the KPIs to be in the range between 0 and 1. This
is the most simple model we can think of in order to combine
KPIs into a single hotspot score.

Non linear models: in this case, we rely on machine learning
algorithms to explore non-linear relationships between KPIs
and the ground truth. More specifically, we will not create
anymore a scoring function, but we will associate directly KPIs
and ground truth g. A generic way to learn such association
is through a machine learning regression algorithm [19].

A machine learning-based approach indeed offers a number
of advantages. Firstly, the resulting model does not make
any assumptions about the underlying function. Secondly,
the model can (potentially) produce an actual value of the
estimated performance rather than just a ranking. For instance,
a regression tree [7] builds a model that exploits the KPIs
to estimate the actual conditions for each sector at that time:
f(k) — g. Depending on the availability of ground truth for
the training set, the predicted value § can be any condition

that correlates with the KPIs.

At the same time, a machine learning-based approach
presents some disadvantages. Firstly, most machine learning
models optimize against the target variable (e.g., mean squared
error), whereas in the optimization process we define our
target: optimize the ranking. Thus, this does not exactly match
current practice, as operators would prefer a prioritized ranking
of sectors to address. Secondly, the resulting machine learning
model is often not easily human-interpretable, and network
engineers cannot modify it to include external restriction such
as SLAs or other priorities. Furthermore, certain KPIs might
have significant importance in terms of detecting a failure
rather than a performance degradation. Thirdly, it breaks
the current paradigm and the tools that are already used in
operation.

In our experiments, we use the scikit-learn toolkit [31],
a well-known machine learning framework offering various
techniques (e.g., decision trees, random forests, SVMs, neural
network regression, etc). In preliminary analysis, the best
results were achieved with random forests [20]. We use the
mean square error for our tree split criterion and 100 tree
estimators. To avoid any over-fitting, we restrict the minimum
number of samples that end up in leaf-nodes to 0.5% of the
dataset, as this will not allow the tree to grow indefinitely.
These parameters were studied with separate training set and
they were later applied to our validation data set.

IV. DATA SETS

As introduced in Section III, we aim to study how to
combine sector KPIs to obtain a synthetic score that better
reflects users’ QoE. For this purpose, we combine two data
sources i) a set of KPIs collected per sector and per hour,
ii) QoE metrics collected using weblogs at per HTTP request
granularity and then associated to specific sectors and for the
same hour window. We can think of KPIs as the features that
we aim to associate with the QoE groundtruth for the same
sector during the same time period.

We leverage one month of such measurements, collected
between January and February 2016 in an operational mobile
network serving over 10 million subscribers. To ease the
analysis and reduce the impact of night/day fluctuations, we
study the peak hour (same hour across multiple days). It is
important to underline that the data sets capture the network
at scale, i.e., all sectors and all customers observed during the
investigation period.

A. Sector KPIs - Features

As described in Section II, a number of KPIs related to
1) signaling, ii) voice, iii) data availability, iv) data congestion
and v) radio performance are collected. In total, we consider
21 KPIs 3 for n sectors, where n is in the order of hundreds
of thousands. These KPIs are measured hourly. Notice that
this granularity has been chosen by the operator as a higher
granularity imposes high network overhead. Therefore, we will
also aggregate our groundtruth into the same one-hour bins per
sector.

3KPIs are selected based on both internal knowledge and vendors recom-
mendation
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Fig. 6. Weblog throughput validation using country-wide drive tests and

various devices. The performance measured by the operator’s middlebox
matches the one measured experimentally.

B. Weblogs - Groundtruth

Web QoE metrics are provided by a web accelerator
middlebox (webproxy in the following) that is deployed in the
operator’s network and is responsible to cache and compress
HTTP objects (see Fig. 1). At the same time, for each HTTP
request, the webproxy logs information such as timestamp,
download duration, subscriber’s id, bytes transferred, and
URL*. More importantly, each transaction contains TCP met-
rics (e.g., min/max/avg round trip time, dropped or duplicated
packets etc.) capturing the delivery performance between the
middlebox and users’ device.

Video QoE: To extract video QoE we exploit the fact that the
YouTube player reports to Google servers summary statistics
at the end of each video playback. These include if the
video has successfully loaded, if the playback has started,
paused or stopped, if there were stalls and how long these
lasted [13]. Despite most of the content is now served via
HTTPs [15], we still see a residual amount of YouTube videos
served over HTTP and we use this to generate statistics per
video transaction (e.g., number and duration of stalls, average
resolution, etc).

Mapping requests to a sector: The webproxy logs do not
contain any information related to the sector where the data
were consumed. Therefore, we use radio events recorded by
the Mobility Management Entity (MME) (Fig. 1) in order to
enhance each web transaction with the set of sectors that were
used. Indeed, MME servers logs the “control plane” messages
(related to paging, radio channel requests, and handovers)
each containing the sector from which users devices sent the
message. For each subscriber we can then create a timeline
describing the sectors connected. With such information we
can tag weblogs entries based on the sector where the requests
have been generated. To avoid any ambiguities, if more than
one sector were used to serve a object (i.e., there was a
handover), we discard the transaction (this occurs for less than
5% of the downloads).

Notice that this process is not trivial: radio events and
weblogs corresponds to more than 3TB per day. In our case,
we exploited the BigData cluster of the operator to implement
this enrichment. However the described job requires processing
that can take hours, even in large data clusters.

4Users’ privacy is protected by proper anonymization techniques.

Validation: We validated the fact that the weblog transactions
can capture the resulting web QoE by performing large-scale
drive tests. We discovered that the metrics correlate well
with one exception: the weblog-based throughput estimation is
only meaningful when considering larger downloaded objects
(> 700k B). Therefore, in our analysis we filtered out smaller
objects when measuring throughput. Fig. 6 demonstrates this
correlation between hundreds of drive tests and the associated
weblogs entries for different mobile devices. These results
indicate that web transaction performance counters, as seen
by the webproxy, are a good proxy for the conditions that are
experienced by the end-users.

Per-sector metrics: The final step is to aggregate per requests
metrics at a per sector and per-hour granularity (to match the
KPI granularity). Therefore, we extract distribution related to
the (min/max/avg and percentiles). In this paper we provide
correlations with respect to the median performance but we
have internally considered other metrics too.

C. Combining the KPIs with the groundtruth

At the end of this process we have hourly per sector
information related to the groundtruth g of i) latency, ii)
download throughput and iii)YouTube video streaming stalls.

To make any statistically significant correlations we remove
all samples where less than 20 web downloads were made by
users in a given sector-hour. Overall, the data set contains more
than 2 million of throughput and delay samples and 7,000 video
streaming samples (there are fewer sectors that had more than
20 non-encrypted video downloads within one hour).

V. EVALUATION

We start our evaluation with a high level comparison of the
achieved correlation by all methodologies. Then, we drill down
into the results of PSO and machine learning methodologies to
better investigate their strengths and weaknesses. Finally, we
investigate the intersection among the under performing sectors
found by different methodologies, i.e., up to which extent they
offer a different view on performance issues.

To avoid any possible bias due to over-fitting, we randomly
split each samples population in two halves: the first is used to
identify the best solution (training), while with the second we
assess the correlation with respect to ground truth (testing).

A. Normalization

Notice that, for all results, weblogs QoE metrics are
normalized with three distinct factors, one for throughput, one
for latency, and one for video stalls. The normalization factor
values are consistent throughout this paper. For example, if
the delay normalization factor is 1000ms then all delays in all
graphs have been divided by 1000ms. This allows to still have
meaningful comparisons without revealing actual values which
unfortunately cannot be publicly disclosed.

Although the exact values are not given it is important to
understand the significance of the normalized values [8].

e Throughput: Normalized values bellow 0.1 typically
mean extremely slow performance, slow web loading and
the inability to play videos. Values between 0.1 and 0.25



[Approach | Configuration |Delay| Thput|Stalls|
(D Baseline | All KPIs 0.15| -0.14| 0.07
@ Baseline |Only data KPIs 0.19| -0.17| 0.09
@ PSO on S |Only weights 0.29| -0.26| 0.17
@ PSO on S |Only thresholds 0.30 -0.29| 0.19
@ PSO on S |Weights and thresholds 041| -0.36 0.22
@ PSO on S |weights 0.46| -0.42| 0.23
@ Non-linear |Random forest regression| 0.40| -0.32| 0.23

TABLE II. SPEARMAN’S CORRELATION FOR DIFFERENT
OPTIMIZATION STRATEGIES BETWEEN THE RESULTING SCORE AND THE
GROUNDTRUTH (WEB DELAY, THROUGHPUT, AND VIDEO STALLS).
POSITIVE CORRELATION FOR VALUES THAT INCREASE AS RESULTING
HOTSPOT METRIC INCREASES (E.G., DELAY AND VIDEO STALLS) AND
NEGATIVE WHEN VALUES DECREASE (E.G., THROUGHPUT).

indicate slow performance that might be acceptable for
mobile networks. Values between 0.25 an 0.5 can be
considered normal performance whereas values above 0.5
are represent excellent performance (i.e., suitable to watch
HD videos).

e Delay: Similarly, normalized delays above 0.75 typically
mean extremely slow performance where webpages take
several seconds to open. Values between 0.25 and 0.75
indicate latencies that can result in noticeable lag in VoIP
applications that results in poor QoE . Values between
0.1 and 0.25 indicate normal performance whereas values
below 0.1 indicate fast, low-latency network that can
facilitate real-time, latency-sensitive gaming.

B. Overall results

Table II details the Spearman correlation coefficient p for
all considered techniques. Results are averaged across 10 runs.

Baseline (1): This corresponds to the achieved correlation with
currently used weights and thresholds. Table II shows a small
correlation. This means that the state of the art solution indeed
captures the performance of the sectors. In fact, recall the
bimodal distribution between peak and non-peak hours seen in
Fig. 2, and Fig. 3 detailing sectors triggering multiple KPIs.
Both pictures were suggesting the presence of correlation
which is now quantified in Table II.

Interestingly, correlation is different for the considered QoE
metrics, with video stalls presenting the smallest values. This
is expected since video stalls depend on a number of other
factors including users’ device type, CDN providers, and is the
metric for which we have the least amount of samples, i.e., the
overall performance of sectors is expected to be associated to
a varied set of services besides video streaming.

Baseline (only data KPIs) 2): As shown in Fig. 3, the
default parameters of the baseline approach put emphasis on
hotspots suffering from signal and voice issues. Given that
we focus on understanding data-related QoE it is important to
examine the correlation when only data KPIs are considered.
By only considering data KPIs in the baseline formula (2), we
do notice a slight improvement with respect to (D, although
the magnitude of the correlation is still small. This is an
indication that a holistic approach which combines signaling,

voice, and data might not be ideal to capture the performance
of individual applications.

PSO on current hotspot formula (3), @), (5) Applying
PSO on the baseline formula improves correlation, but the
entity of such improvement differs based on which parameters
are optimized. Specifically, optimizing only weights presents
the smallest benefit (3), while the best solution is achieved
optimizing both weights and thresholds (5) with a striking im-
provement factor of x2.7, x2.5, and x3 for delay, throughput,
and video stalls, respectively. This is because PSO allows to
identify an optimal set of parameters specific for each target
metric, rather than enforcing a single configuration as for the
baseline.

PSO on modified hotspot formula (6): As discussed in
Sec. III-B, the Heaviside function transform the raw KPI values
into binary values (KPI triggered or not). Our intuition is that
those values provide a wealth of information on performance,
hence the raw KPI values should be directly exploited in the
hotspot formula. We now see that when applying PSO on
the modified hotspot formula S (Eq. 3), correlation further
improves with respect to baseline by a factor of x3.06, x3,
and x3.2 for delay, throughput, and video stalls, respectively.

Random forest regression (7): Finally, having assessed corre-
lation for all discussed linear combinations, we explore implicit
non-linear functions via random forest regression (Sec. I1I-B).
Results show that the obtained Spearman’s correlation is not
as good as the best PSO solution (6). The main reason is
the nature of the objective function that is used in each
algorithm: while in PSO we can set the optimization target
to match our needs (in our case to provide a better ranking or
Spearman’s correlation), off-the-shelf regression trees depend
on metrics such as mean squared errors that better correlate
with groundtruth values rather than the ranking. Still, it is
interesting to notice that such algorithms already provide a
significantly better solution than the baseline approach.

Takeaways: Metaheuristic and machine learning algo-
rithms provide significant improvement over baseline ap-
proaches. It is also recommended to apply a simple linear
combination of raw KPI values and to avoid the currently
used thresholding mechanisms.

C. Focusing on PSO

Fig. 7 shows the relationship between the hotspot score
and the throughput for the baseline approach (Fig. 7a), the
hotspot formula .S optimized for both weights and thresholds
(Fig. 7b), and the hotspot formula S without the Heaviside
function (Fig. 7c). Specifically, we bin the performance score
in bins from 0 to 10, and for each bin we plot the throughput
distribution using box plots capturing 5%, 25" 50t", 75th,
95" percentiles. We further report the average of each bin
with a dot.

Notice how the boxplots are relatively “flat” for the base-
line approach, with a high concentration of sectors having a
score of zero or six (Fig. 7a). This bimodal distribution, also
noticed in Fig. 3, is the result of the (manual) tuning of weights
and thresholds of the current monitoring system.
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Fig. 8. Estimating web delay and throughput using the KPIs. We observe that
the average delay matches the predicted value but there is a wide distribution
within each bucket.

Conversely, PSO spreads the scores across all bins, better
separating well-performing from poor-performing sectors. No-
tice also how median values for the two PSO optimizations
(Figs. 7b,c) are very similar, but average values are better
separated using the modified formula S. More in details, while
37% of sectors have a score larger than 0 for Fig. 7b, this drops
to 19% for Fig. 7c. Considering results for PSO on S, sectors
with score 10 have x11.1 less throughput when compared
with the sectors with score 0. In contrast, the baseline method
(Figs. 7a) shows significantly smaller separation, namely x5.7.
Finally, sectors with score 0 have x2.6 the throughput when
compared to the baseline scoring, demonstrating that this
method can better isolate such cases. Results for delay and
video stalls are similar but we do not report them due to lack
of space.

D. Focusing on Random Forests

Table II shows how PSO overperforms random forest
regressions in terms of correlation due to the difference in the
optimization function. However, the advantage of regression
is that it provides an estimation of the actual conditions (e.g.,
estimates the expected delay, throughput an video stall values).

Fig. V-C shows these estimations of throughput (a) and
delay (b) obtained with the regression. Specifically, we split re-
gressed values in 10 bins, and for each we plot the distribution
of groundtruth values using box plots. In theory, a very good
model would have very narrow distribution centered around

Hotspot Score

(b) PSO on S: weights and thresholds

0.8

0.6 T

Normalised Web Throughput

Hotspot Score

(c) PSO on S weights

Ra\Bs. | poor medium good || poor medium  good
poor 85% 14% 1% T1% 26% 3%
medium | 32% 59% 9% 32% 42% 26%
good 5% 21% 74% 2% 16% 82%

TABLE III. NORMALIZED CONFUSION MATRIX FOR REAL V.S.
PREDICTED THROUGHPUT (LEFT) AND DELAY (RIGHT). IDEALLY, ALL
SAMPLES SHOULD BE ON THE DIAGONAL.

each decile. While averages are indeed very close to the real
value, each bin presents a wide distribution of values, i.e., the
model is still affected by some noise. Nevertheless, we can
clearly separate performing from underperforming sectors.

Such observation motivated us to perform an additional
experiment: create a classifier based on ground truth buckets.
In fact, despite the fact that regression allows to have an
estimate of QoE, as a first approximation it can be sufficient
to divide sectors in classes based on performance °‘labels’
(e.g., poor, medium, good). To achieve this, we need to
partition regression values in classes (we obtained the raw
thresholds for the split through conversations with the operator
network teams). The selected thresholds however create highly
imbalanced classes: we can rarely find samples that belong
to the high delay or the low bandwidth case (most of the
sectors exhibit medium or high performance even during peak-
hours). To address this issue, we use a balanced tree to
assign a higher weight to classes having smaller number of
samples (low throughput or high latency). The reasoning is
that providers mostly care about discovering underperforming
sectors and some miss-classification between high and medium
performance classes is tolerable. The confusion matrix in
Table V-C reports the obtained classification accuracy for both
throughput and latency. The best performance is obtained
for good-vs-good and poor-vs-poor, i.e., the classes we aim
to separate, while the major confusion comes from medium
performance values being confused with poor performance
values.

Takeaways: Off-the-shelf machine learning regression tech-
niques offer a slightly lower correlation with respect to PSO.
However, they enable an estimation of the actual values of
performance metrics (instead of a score) which is, as a first
order approximation and without very fine-grained tuning,
sufficiently accurate to separate correctly performing from
under performing sectors.
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E. Comparing top/bottom performing sectors

The final objective of the discussed methodologies is
to rank sectors based on performance. In our case, bottom
performing sectors are the ones with the highest delay, lowest
throughput and highest percentage of videos that experienced
stalls. However, it is important to identify healthy sectors as
well, since they can provide further information to understand
the causes behind poor performance (e.g., comparing sites
configurations, locations, etc.)

Comparing different approaches: We focus on the top and
bottom 500 sectors, and for each group of sectors, Fig. 9 shows
the distribution of the ground truth throughput (a) and latency
(b) using box plots. As previously observed, the application
performance of sectors that end up at the top and bottom of
the rankings varies significantly with each methodology. We
observe that PSO applied on the modified hotspot formula S
(® and random forest regression (7) achieve significantly better
results in identifying the well-performing sectors compared to
the baseline (left plots). The main reason is the nature of the
original function: to identify faults, the baseline methodology
would just assign a score equal to zero to most of the average
and good performing sectors since no KPI thresholds are
defined conservatively. Instead, PSO (6) is better at identifying
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Fig. 11. Comparing baseline vs. optimised rankings of the 10 percentile

worse-performing sectors in terms of throughput groundtruth. Ideally, both
rankings should place them in their top 10 percentile too.

poor-perfoming sectors in each of the applications (includ-
ing for video stalls which results are not reported due to
space constraits). These results further corroborate the overall
comparison discussed in Sec. V-B. Considering instead the
bottom performing sectors (right plots), PSO (6) presents the
most consistent performance across metrics, while random
forest regression suffers of lower accuracy in assessing latency
performance.

Comparing baseline and best solution found: In Fig. 10
we further quantify the intersection between the baseline
and the best PSO approach (6) rankings. In particular, we
focus on the worst 500 performing sectors and compare the
QoE metrics distribution for sectors found in both, only PSO
(added), and only baseline (removed) rankings. First of all,
only 56% (49%) are found by both techniques for throughput
(latency). On closer inspection, these are sectors that exhibit
poor performance in all possible KPI classes (voice, data,
signaling) and show the lowest throughput and delay. Notice
how the remaining sectors captured only by the baseline
approach (removed) present on average a higher throughput
(lower latency) with respect to the common sectors, whereas
the ones discovered (added) show performance that is as poor
as the ones in the common set.

To conclude, Fig. 11 shows a scatter plot of the sectors’
rank position between these two methods for the worse-
performing 10% sectors in terms of throughput. An ideal
ranking methodology would place these sectors in the top
90% (e.g., areas A and B for (1) and areas B and D for
(®). As expected, the majority of the sectors cluster at area B,
indicating that both rankings are able to identify a good part of
the underperforming sectors. More interestingly, areas C' and
D present sectors having very small scores according to the
baseline approach. The reason is that the baseline methodology
assigns a large number of sectors with score zero as none of
the KPIs “triggered”. This is compatible with the nature of the
original function: to identify important faults in the network
rather than sectors with poor throughput. We further notice
that PSO puts most of these sectors at the top 60% of the
ranking with quite a lot being correctly in the top 10% (lower
and middle parts of area D). Results for delay and video stalls



L Category L Throughput L Latency L Stalls ‘

Signaling 2% 37% 3%

Voice 0% 1 % 2%

Availability 8% 30% 30%

Congestion 88% 26% 36%

Radio 2% 6% 29%
TABLETV. DECOMPOSING THE MOST IMPORTANT FEATURES FOR

EACH QOE COMPONENT INTO KPI CATEGORIES (INFORMATION GAIN).

are similar (not shown due to space limitations), demonstrating
that this methodology can better capture individual application
performance. Finally, notice that points in area B do not
perfectly lay on the bisect line, i.e., under performing sectors
are spot as an aggregate, but severity is differently captured
by the two methodologies.

Takeaways: By applying a data-driven methodology like
PSO, operators are empowered with a flexible tool that use
the already collected KPIs to improve their view on underper-
forming sectors.

VI. DISCUSSION

Selecting QoE metrics: While we used KPIs to estimate web
experience (delay, throughput, video), this methodology can
be used to build a ranking for other QoE metrics that can
potentially correlate with the KPIs. These can include dropped
calls, VoIP performance, specific application performance
(e.g., facebook, gaming, etc) or even customer satisfaction. The
main requirement is to have enough samples of groundtruth to
build the model.

State of the art solutions try to provide a single performance
scoring function to capture different types of problems. To
quantify this effect, we focus on the worst 500 sectors ranked
by the best PSO solution (6) and compute the fraction of
the score associated to each KPI class. Table IV compares
the importance of the KPI classes for the three QoE metrics
considered. As we observe, KPIs’ importance significantly
varies depending on the QoE metric. Throughput, depends
almost exclusively on KPIs that have to do with congestion
and availability of high-speed channels. Latency is a more
complex phenomenon as it depends on signaling failures
(e.g., failures to establish a dedicated channel), availability
of resources and congestion. Finally, interestingly enough,
even if video streaming is a throughput driven service, the
importance of KPIs when capturing stalls significantly differs
from generalized throughput: Video quality also depends on
the radio conditions (interference, noise, etc) as these can
create jitter and download stalls.

These results manifest the need of building an adaptive
data-driven approach to exploit the, already collected, KPIs
in order to better understand both historical and real-time
performance of each application at each sector of the network.

Building a generic ranking: We envision a system where
multiple objective metrics (individually studied to optimize
correlation with groundtruth) are optimally combined into a
single Sector Priority Index (SPI). In this work, we focused
on network measurements since, currently, sector rankings are
based on a KPI scoring function. However, when defining the

importance of a sector, one should consider also other informa-
tion sources such as network sites profitability, CAPEX/OPEX
investments, country regulations, etc. How to synthesize such
SPI is an open question. Nevertheless, we believe that the
optimization methodology discussed in this work can support
the creation of such index.

Constant evolution: Network priorities and user QoE expecta-
tions are constantly changing as new usage paradigms emerge.
Furthermore, the network is constantly evolving too, with 5G
deployments being just a few years away. One of the implicit
benefit of data-driven approaches is that they empower analysis
automation. In our case, we envision a system that periodically
adjust the hotspot score function parameters to capture long
and short term trends. For instance, it can automatically incor-
porate seasonality effects. Similarly, automation can provide
fine grained configuration across time (e.g., extract different
optimization parameters to capture separately morning, after-
noon, and night hotspots) or space (e.g., investigate separately
residential areas from downtown districts). Notice that there is
is no currently available solutions capable to achieve such a
flexibility.

From KPIs to groundtruth: In this paper, we used weblogs
to build an estimation about individual QoE components such
as web throughput, delay, and video stalls. Building such a
dataset requires some instrumentation (e.g., middleboxes), and
exhibits significant computation complexity as we have to
bridge the gap of per user (or per flow) performance with per-
sector metrics. Therefore, it is prohibitive to run such processes
in a continuous manner. Our work allows to use relatively
sparse samples of groundtruth to associate them with KPIs
that are already collected. Furthermore, other data sources can
be used for groundtruth: active tests (e.g., drive tests), crowd-
sourced data such as OOKLA [1] and user surveys, or even
quality metrics coming through collaboration with application
developers and CDNs.

VII. RELATED WORK

Metaheuristics have been used in the past for network
optimization and planning [27]. For instance, simulated an-
nealing and tabu search were used to allocate radio channels
or to discover the minimum connected dominating set for
wireless networks [29]. Randomized greedy algorithms have
been used to find the optimal location of base-stations in
order to maximize the traffic covered and minimize installation
costs [4]. In [18] cloud services are ranked based on diverse
KPIs such as cost, performance, stability, usability, elasticity,
etc., using multi-criteria decision-making [14]. With respect to
these works, we attempt to build a methodology that is able
to estimate individual QoE components using a set of already
collected KPIs. To the best of our knowledge, this is the first
time that someone addresses this challenging problem.

Over the years there have been many attempts to under-
stand how KPIs can be used to spot cellular performance
bottlenecks [30] and network planning [24]. In [3], an iterative
process of network deployment and monitoring through KPIs
and drive tests was used to identify the optimal network con-
figuration. Nokia engineers demonstrated how controlled ex-
periments such as drive tests and on-site inspections, together
with A-B testing, can be used to establish the relation between



groundtruth and KPIs in order to optimize the network [21].
In [11], the authors show how drive tests can be used to identify
the main KPIs that relate to QoS in a tetra network. Finally,
field tests are used to build an empirical correlation between
KPIs and throughput [23]. In addition to these works, there
have been vendor recommendations on how to set performance
thresholds and identify the worse performing sectors in the
network. For instance, Huawei [35] also describes an iterative
A-B process and provide recommendations for default values
while Nokia [2] has extensively analyzed the meaning of each
KPI. Our work breaks these long-term assumptions that QoE
has to be build only with iterative field tests that are costly and
inflexible. We propose a data-driven methodology that is able
to automatically establish the relation between KPIs and the
groundtruth in order to provide insights about underperforming
sectors.

VIII. CONCLUSIONS

With the explosion of mobile internet traffic and the ever-
evolving user expectations, it is of paramount importance for
mobile operators to be able to quantify the performance of
their network in terms of the delivered application services
quality. We applied a novel data-driven methodology that
builds upon the already collected sector KPIs and bridges them
with different QoE metrics. By doing so, the system empowers
operators with an automated methodology that provides better
visibility on underperforming sectors. Moreover, our results
indicate that the currently used solution that is based on
thresholding is sub-optimal to identify critical sectors. This
opens new areas or research for monitoring solutions enriching
the quality and accuracy of the network performance indicators
collected at the network edge.
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