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ABSTRACT
Learning the right representations from complex input data is
the key ability of successful machine learning (ML) models.
The latter are often tailored to a specific data modality. For
example, recurrent neural networks (RNNs) were designed
having the processing of sequential data in mind, while con-
volutional neural networks (CNNs) were designed to exploit
spatial correlation naturally present in images. Unlike com-
puter vision (CV) and natural language processing (NLP),
each of which targets a single well-defined modality, net-
work ML problems often have a mixture of data modalities
as input. Yet, instead of exploiting such abundance, prac-
titioners tend to rely on sub-features thereof, reducing the
problem on single modality for the sake of simplicity.

In this paper, we advocate for exploiting all the modalities
naturally present in network data. As a first step, we observe
that network data systematically exhibits a mixture of quan-
tities (e.g., measurements), and entities (e.g., IP addresses,
names, etc.). Whereas the former are generally well ex-
ploited, the latter are often underused or poorly represented
(e.g., with one-hot encoding). We propose to systematically
leverage state of the art embedding techniques to learn en-
tity representations, whenever significant sequences of such
entities are historically observed. Through two diverse use-
cases, we show that such entity encoding can benefit and nat-
urally augment classic quantity-based features.

1 Introduction
Deep learning’s success is mainly due to its ability to learn
good representations from complex unstructured data. Such
ability is a fundamental aspect of intelligent agents, both
artificial and biological. The representation learning ubiq-
uity is perhaps best witnessed by the striking similarities be-
tween features learned by artificial neural networks and bi-
ological brains. Two representative examples are visual and
spatial representations. Decades after the discovery of sim-
ple and complex cells by 1983 Nobel prize winners Hubel
and Wiesel [17, 16], it was found that deep artificial neu-
ral networks learn strikingly similar simple-to-complex rep-
resentations [21, 5]. The same applies for the 2014 No-
bel prize winning discovery of Place and Grid cells [11, 8],
which are neurons that encode internal representations of

places and space. Similar representations were discovered
in artificial agents that learn how to navigate [1, 7]. Ad-
vances in Natural Language Processing (NLP) similarly cor-
roborate the importance of learning good representations, by
(i) pre-training neural networks on large unlabeled datasets
with self-supervised tasks, followed by (ii) per-task fine tun-
ing with few labels – which is behind the success of GPT-3
in NLP few-shot learning [3]. A similar process also proved
crucial for few-shot image classification – where learning a
good representation or embedding, followed by training a
simple linear-classifier on top of it outperformed state of the
art few-shot methods [27].

Casting these observations to networking, to fully exploit
machine learning potential, it seems necessary to put more
focus on representation learning of network data. This is all
the more important, given the abundance of unlabeled data
generated and collected by networks. Such appeal is how-
ever immediately moderated by the complexity of network
data, namely its multi-modality. Indeed, the most prominent
advances in machine learning have been obtained on clas-
sic single modalities. From the perspective of input data,
NLP takes sequences of categorical variables as input and
CV takes as input pixel values stored in fixed-size matri-
ces representing images. Additionally, within the same lan-
guage, words have a coherent meaning across contexts and
corpora. The same applies to visual features which are “uni-
versal” across domains to some extent. This is far from be-
ing the case in network data which is way more heteroge-
neous (including multi-variate timeseries, flow and system
logs, devices configuration, topologies, routing events, etc.)
and where identifiers may have a more “local” significance.

Lacking a universal network data representation, machine
learning has been applied to network problems in a rather
opportunistic way, either focusing on a specific modality, or
handcrafting input features by mean of expert knowledge.
On the opposite side, each classic modality in mainstream
machine learning tasks has its own research community. For
example, CV heavily relies on variations of CNNs (AlexNet[20]
, ResNet[12] or MobileNet[15]) to handle images tasks (e.g.,
classification, segmentation). Modern NLP models instead
take as input vector representations of words and sub-words,
pre-trained using some word embedding technique (e.g., word2vec [24]
or ELMo [25]) on large corpora of raw text. Sequence to se-



quence models (first long-short term memory[13] then trans-
formers [28]) are then often applied on such sequence of vec-
tor representations to solve a language task (e.g., classifica-
tion, translation).

As such, a legitimate yet challenging question emerges:
“what is the representation learning strategy that is best fit
for the various modalities of network data?”. It is exactly to
answer this question that we call for research arms in this pa-
per. We believe that in order to take full advantage of emerg-
ing machine learning techniques, the networking community
must rethink its “retina” (i.e., the input data format) and “vi-
sual cortex” (i.e., the representation learning strategy used
to extract knowledge from the input). Even assuming that
for each modality there exists a different learning strategy, it
is unlikely that one needs to invent a new machine learning
discipline for each of them. Alternatively, and more realis-
tically, one could map each of the existing network modali-
ties to the best-fit existing representation learning technique
– which is the starting point of this paper.

Taking a first principled step beyond uni-modality, we re-
mark the existence of a natural dichotomy in network data,
where we identify two network data types: quantities which
are measured features such as numbers of packets, bytes,
etc.; entities1 which instead range from the named objects
that relate to these measurements (e.g., source IP, user id) to
various attributes or events’ names (e.g., “interface down”).
As we argue about the similarity between sequences of co-
occurring network traffic entities and sequences of words
in natural language, we postulate that language model pre-
training is the best tool to learn a representation for such data.
Indeed, similarly to natural language, the order and context
in which network entities co-appear in network logs is often
not arbitrary, and hence patterns could be learned from it. For
example, in NLP, recent word embedding techniques [24,
25] proved remarkably powerful in extracting deep semantic
relationships between words from their co-occurence in raw
corpora. Accordingly, we propose to systematically lever-
age language model pre-training to learn vector representa-
tions, also known as embeddings, whenever (i) significant
sequences of such entities are historically observed and (ii)
these entities are consistently named across time and space.

Throughout the paper, we refer to this network data di-
cotomy as entity-quantity bimodality, that we systematically
explore as a first principled step towards network data mul-
timodality. In particular, we advocate for the need to use
language model pre-training, such as word embeddings, to
learn rich entities representations. The latter can then be sim-
ply concatenated with quantities (or their auto-encoded rep-
resentation[19]), before performing a learning task. We il-
lustrate our proposal in two diverse toy cases: (i) clickstream
identification, where entities are sequences of domain names
that carry a semantic meaning, as well as (ii) terminal move-
ment prediction, where entities are access points identifiers
that are not expected to have any semantic.

1In machine learning frequently identified as categorical variables.

In the remainder of the paper, we abstract our bimodal ap-
proach in Sec. 2 and apply it to our illustrative use cases in
Sec. 3. Finally, we show supporting examples from the liter-
ature in Sec. 4 and discuss future opportunities in Sec. 5.

2 A bimodal representation for network data
As a first step, we narrow the scope to a family of network
data which we believe is representative for a significant por-
tion of data collected in networking. We then provide some
background on word embeddings which are our chosen lan-
guage model pre-training method. We illustrate why and
under which conditions, they are suitable to deal with what
we call sequences of entities. We conclude by illustrating a
generic prototype of the bimodal pipeline.

2.1 Entities and quantities in network data
While producing a thorough taxonomy of all network data
types is a challenging and useful target, it is outside the scope
of this paper. Instead, as a first step, we simply notice the dif-
ference between two main families of data types, for which
a unified representation learning strategy could be devised.

As argued earlier, most of network data concern a mixture
of entities and quantities that evolves over time. Quantities
represent telemetry derived by various measurement appara-
tus, while entities are abstract objects often related to them.
The latter are described by names that are assigned by hu-
mans (e.g., trouble tickets, error messages found later in the
logs, IP addresses, domain names, host identifiers in gen-
eral), hence carrying a semantic meaning. We further argue
that sequences of entities carry precious information encoded
in the non-arbitrary order in which the elements appear in the
sequence (i.e., the “context” in which the entities co-occur,
with one another and with the quantities). We advocate that
such sequences must be systematically leveraged, and that
NLP word embedding and self-supervised pre-training are
the appropriate representation learning techniques.

Of course, we acknowledge that not all network data is se-
quential or measured over time (a typical example is static
topology snapshots). However such data still often pertains
to entities (e.g., node names or identifiers) for which se-
quence data is abundant in parallel sources (e.g., routing in-
formation), in which case our proposed representation learn-
ing guidelines are still applicable to some extent.

2.2 Word and character embeddings
Oversimplifying, the closest problem in ML communities is
the learning from sequential data in NLP - words are noth-
ing more than sequences of entities that follow each other.
To perform a machine learning task, words must be first
transformed into a numerical representation. This can be
naïvely done using integer or one-hot encoding. The last
years however have witnessed the emergence of tools that
became almost standard for NLP tasks. Instead of oper-
ating on raw one-hot encoded vectors, modern NLP mod-
els, either build or take as input word vector representations



Figure 1: Generic bimodal pipeline.

obtained through self-supervised pre-trained models created
from large text corpora. One famous word embedding tech-
nique, which we use in this paper as an example for its sim-
plicity, is word2vec [24]. It transforms each word into a
high dimensional vector, hence “embedding” it into an hy-
perspace. In practice, word embeddings are sometimes com-
plemented with subword or character level embeddings mean-
ing that sub-words/characters themselves have vector repre-
sentations [18, 4]. This allows to account for out of vocabu-
lary words, misspellings, etc.

2.2.1 Building vector representations with word2vec
With word2vec, in a nutshell, a simple neural network with
one hidden layer (whose dimensions are those of the embed-
ding vectors to be learned) is trained to predict a target word
from its surrounding context. Word2vec thus does not need
expensive or human-made labels, but rather cheaply builds
labels to supervise the training from the sequence data itself,
thus it is self-supervised. First, all words are encoded using
one-hot encoding, resulting in a one-hot vector of the size of
the vocabulary in which each position represents one word.
The neural network is then trained on large amounts of se-
quences of words from which the (context, word) pairs are
extracted for training. At the end of the training, the neural
network used to predict target words is no longer used, only
the weights are. In particular, for each position in the one-
hot encoding, the learned weights are used to form the vector
representing the corresponding word. Two main parameters
hence influence the learned representations: the size of the
embedding layer, and the size of the context window with
which labels are built.

2.2.2 Emerging properties
Although trained to “simply” predict the next word in a se-
quence, the vector representations learned by word embed-
dings exhibit interesting properties. The most mediatized ex-
ample is the ability to extract semantic relationships by doing
simple arithmetic operations on vectors (e.g., King - Men +
Woman = Queen). Another popular example is that vector
representations of different languages exhibit strikingly sim-

ilar structures, such that it is possible to use a few anchors
to align the vector representations of two languages and find
that words with similar meaning fall in the same “positions”
in each language vector [23]. This same observation opened
the way later to self-supervised language translation using
only single-language corpora [22].

2.2.3 Conditions to apply language model pre-training

When applied on natural languages, techniques like word2vec
and language model pre-training in general do not impose
particular conditions that the language to model must sat-
isfy. However, we believe that when moving away from nat-
ural language and generalizing to any arbitrary sequence of
named entities, at least two conditions must be satisfied. The
foremost is the (i) consistency of naming. Like words in nat-
ural language, network entities are expected to always keep
the same meaning2. Moreover, we require (ii) stability of the
corpora: while this is implied in natural language as adding
a new word to the vocabulary is an unfrequent event, observ-
ing a new entity in sequence network data is rather frequent.

Drawing the proper conclusion from these above condi-
tions, we can infer that sequences of entities containing, e.g.,
non-consistently anonymized IP addresses, are not suitable
for entity embedding. Instead, entities that are named con-
sistently and relatively stable over time are good candidates.

2.3 A bimodal pipeline
We sketch a prototype implementation of a bimodal pipeline,
consisting of four steps namely Pre-training, Sample selec-
tion, Training and Inference, as shown in Figure 1.

Pre-training on historical sequences. Similarly to pre-
training in classic ML, our first phase consists in leveraging
huge amounts of unlabeled data to learn relevant represen-
tations from the different data types. As exemplified in the
leftmost part of Figure 1, the pipeline takes sequences of var-
ious unlabeled networking data as input. Quantities and en-
2However some exceptions may exist, e.g., “set” has different
meanings depending on the context. As such, contextual word em-
beddings like ELMo [25] have been devised that solve this problem.



tities are then fed to the most suitable representation learning
pipelines, e.g., auto-encoder for quantities and word embed-
dings for entities.

Input sample selection Once embeddings are trained, the
next step is to define the input samples for downstream tasks.
By input sample, we mean the individual subject that the
next ML task will take as input. Unlike some classic ML
tasks whose subject samples are often clear (either a ma-
trix of pixel values for image classification or a sequence of
strings for translation or sentiment analysis), network-related
ML tasks may have a variety of subjects. For example, if the
goal is to classify IP addresses (respectively flows) as either
malicious or benign, then the input sample should be a fea-
ture vector representation of the IP address (respectively the
flow). Alternatively, the input sample could be the first N
packets of a flow, or a sequence of flows, etc. Once the input
sample is decided, its fixed-size vector representation is cre-
ated by combining (i) the corresponding quantities (or their
representations in case of auto-encoding) and (ii) the learned
entity representations. For the sake of simplicity, in the re-
minder of this paper entities’ embbedings and quantities are
combined by simple concatenation.

Training downstream ML tasks When pre-training and
sample selection is done, training a downstream task is rather
straightforward. For instance, in an unsupervised use-case,
one can cluster the vector representations. Likewise, in a su-
pervised classification use-case, one can associate labels to
the vector embeddings to train the classifier. Notice that in
this case, the more robust representation learned, the fewer
the labeled samples required for training [27, 3]. In our
clickstream toy case, we use a relatively small synthetically
built labeled dataset leveraging page visits of top 1000 Alexa
ranking websites.

Inference and models updates The last step once mod-
els are learned, is to use them to perform inference. Classic
ML challenges on how to keep the models up-to-date clearly
apply here, but are out of scope in this paper.

3 Use cases
With the objective of demonstrating the validity of the pro-
posed bimodal approach, this section illustrates the advan-
tages of embedding network entities, using two illustrative
use-cases clickstream identification and mobile terminal
movement prediction. It is worth mentioning that to show-
case our approach, we only focus on categorical data embed-
dings and use an as-is network quantities representation (i.e.,
raw unprocessed data). Otherwise stated, we use word2vec
pre-training for entities and leave quantities as they are: while
a better representation of quantities might exist, we leave it
for future work. Compared to the practitioner approach to
resolve to unimodal learning, these two use cases allow us
to demonstrate the usefulness of categorical entities embed-
ding – as their use can either improve or outpeform results
gathered by quantitative data.

Figure 2: Bimodal pipeline for the clickstream use case.

3.1 Clickstream identification
In modern Web traffic, a single page corresponds to the down-
load of tens of objects, retrieved from tens of different loca-
tions.3 Since the advent of encryption, an ISP which collects
flow logs of web traffic would only observe a series of en-
tries with no clue of (i) which entry belongs to which page,
nor (ii) which flow queries the domain of the main page i.e.,
core domain, and which flows query a necessary resource
to render the page i.e., support domains. Such knowledge
could be useful for example to estimate per-page Web qual-
ity of experience metrics from flow logs. Beyond the useful-
ness of the scenario itself, the two tasks above comes with
a number of methodological challenges that we believe are
well suited to illustrate the proposed bimodal representation
learning scheme.

As shown in Figure 2, a network vantage point collects
per-flow size, duration, measurements (quantities) and re-
lated domain names (entities). Following our guidelines,
the first step is pre-training. In our case, we imagine se-
quences of entities as words in a language, thus we train a
domain2vec model that is later used (at training and infer-
ence time) to embed domain names. As earlier mentioned,
domain names can be embedded either with word or both
word and character embeddings. With character embedding,
words like cdn, cdn21, and cdn22 will have similar em-
beddings even if they never co-occur in similar contexts.

Given the two tasks described above, an input sample in
our case is a series of consecutive flows, corresponding to the
simultaneous query of an unknown number of web pages. A
first ML task for us aims to “disentangle” flows by associ-
ating each of them to its Web page. A subsequent task then
is to classify flows as either core- or support-related. We re-
lied on a Gated Recurrent Unit (GRU) model for such binary

3Respectively 70 and 50 in our top 1000 Alexa dataset.
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Figure 3: 2D PCA visualization of the domain embed-
dings of two different pages.

Approach Precision Recall
Q1 Q2 Q3 Q1 Q2 Q3

Naïve 100% 100% 100% 14% 16% 20%
Quantities 66% 75% 100% 50% 60% 75%
Word emb. 75% 100% 100% 33% 50% 66%

Word + Char emb. 80% 100% 100% 58% 77% 87%

Table 1: Comparison of different approaches to the click-
stream use case.

task. We qualitatively show how our entity-based representa-
tion helps solving these tasks. For each sample, we compare
different representations: quantity-only features (e.g., flow
size and byte progression related metrics), and word embed-
ding only, word and character embeddings.

For our evaluation, we consider a Web traffic dataset con-
taining 20k domains retrieved by downloading 10 times each
of the Web pages from top 1,000 Alexa ranking, while record-
ing in parallel flow logs. The pre-training dataset is then con-
structed by synthetically generating 100k multisessions of 3
to 10 (median of 6) simultaneous page visits. Domain2vec is
then trained using a context window of 200 flows that gen-
erate a vector representation with 200 dimensions. The su-
pervised learning dataset on the other hand consists of 60k
similarly synthesized multisessions. We select around 900
pages to build the training and validation sets (50k multises-
sions). We test on 10k multisessions containing composed
by theremaining unseen 100 pages which queried more than
1.2k unseen support domains. All in all, training/validation
and test sessions queried respectively 15k and 2k domains.

As a first qualitative illustration, Figure 3 plots a 2 compo-
nent PCA representation of domain embeddings belonging
to two web pages. Interestingly, without additional feature
learning, the domain embeddings of different pages are al-
ready “disentangled”, i.e., flows of different pages cluster in
different regions, thus hinting that entity-based embeddings
extract useful features. More quantitatively, Table 1 presents
the results of our classification model, focusing on precision
and recall of the minor class, i.e., core domain. In addition to
the earlier discussed representations, we show as a baseline
the results of a naïve predictor which systematically tags the

Figure 4: Bimodal pipeline for the movement prediction
use case.

first domain as core (and hence correctly predicts that one but
misses the others in the multisession). For each multisession,
we compute a precision and a recall in predicting the core
domains. We show the 3 quartiles across all multisessions.
Despite the difficulty of the task, all models performed better
than the naïve baseline. Surprisingly, entity-based encoding
alone outperformed the quantity-based one. Less surprising,
character embedding adds value compared to word embed-
ding only. Note that here, one-hot encoding could not have
been a viable solution because (let alone its prohibitive mem-
ory cost) the test set contains only unseen pages.

3.2 Movement prediction in Wireless LANs
A Wireless LAN deployment typically involves several ac-
cess points (AP) providing network connectivity to mobile
terminals (e.g., cellphones, laptops). In this context, one
problem is to predict early enough whether a terminal is go-
ing to move away from its access point, reconnecting to an-
other one. This allows the network operator to proactively
steer the terminal to roam before its signal actually degrades.

As depicted in Figure 4, the available network data are se-
ries of received signal strength indicators (RSSI) (quantities)
and the set of APs traversed over time (entities). In other
words, each terminal has a current associated AP and a sig-
nal strength towards it. According to the proposed bimodal
pipeline, at pre-traing the RSSI and AP lists are grouped,
this time by user ID. The sequences of per-user APs are then
used to train an AP2vec embedding model using word2vec.
Once the embedding model is trained, the downstream task
is modeled with a 1D CNN using as input the concatenation
of the RSSI series with the related AP embedding.

To evaluate the performance of the bimodal pipeline in this
use case, we consider a dataset including 5 days of real net-
work data with approximately 2k mobile terminals and 240k



Figure 5: Comparison of movement prediction models.

movement events across 80 different AP. The AP2vec pre-
training is executed on 10 AP long sequences and generate an
embedding vector with 20 dimensions. The 1D CNN model
is then trained with samples composed by the last 10 RSSIs,
and the last AP vector representation. The supervised learn-
ing training dataset is composed by the first 3 days while the
test one the remaining 2 days.

Figure 5 presents the precision-recall scatter plot obtained
with the 1D CNN model when RSSI-only and RSSI+AP2vec
embeddings are used as input. From the results it is clear that
the bimodal network data representation help the ML task to
reach a more accurate and stable movement prediction (as
it can be observed in the RSSI plot over time, not reported
here due to lack of space). It is worth mentioning that in this
case, given the limited number of entities i.e., 80, one-hot
encoding is also a viable solution as embedding technique.
Despite finding the optimal embedding technique is out of
the scope of this work, we report that surprisingly the sam-
ple composed by RSSI and AP2vec always lead to a slightly
better model.

4 Related work
With the advent of machine learning, in the last few years
the networking community started to explore different ways
of representing networking data and in particular categorical
ones. One of the first attempts in this direction is IP2Vec
[26] which embeds network packets’ source and destination
IP addresses and ports with the objective of identifying IP
addresses with similar behaviors. However, the embedding
is limited to the 5-tuple itself and does not fully exploit the
power of word2vec embedding when used with consecutive
sequences of flows. Another important work that uses em-
bedding in the context of Network data is DANTE [6] which
encodes with a word2vec-like approach port sequences con-
tacted by attackers with the goal of identifying malicious be-
haviors. Similarly to DANTE, Darkvec [9] uses word em-
bedding to project potential attackers, identified by IP, and

grouped by service, identified by ports, into a latent space
with the goal of clustering senders with similar behaviour.
Another interesting example that exploits the power of em-
beddings is [10] that is close to the clickstream usecase. Au-
thors use browsing historical data to generate user profiles by
means of representation learning techniques such as word2vec.

The alternative to finding a suitable representation for the
networking data at hand is feature engineering. As previ-
ously discussed, feature engineering in the context of net-
work data frequently ends up in using only a single modal-
ity, typically the quantity. For instance, in [2] authors study
the trade-off between model accuracy and the computational
cost of feature extraction at line rate. To do so, they de-
veloped Traffic refinery, a framework to select a proper data
representation (i.e., through feature selection) that is both ef-
fective (i.e., achieve good accuracy) and feasible (i.e., can
be deployed at line rate). nPrintML [14] takes an orthog-
onal approach to network data representation with respect
to the one proposed in this paper, by encoding packets in a
one-hot encoding format that is then used to feed classical
ML/DL models. While capturing all features from network
data, such approach is extremely costly and fails to identify
relevant patterns.

5 Conclusions
This paper argues for the need of a systematic, unified and
multi-modal representation learning for network data. As a
first step, we propose a principled bimodal network data rep-
resentation of entities and quantities, in which historical se-
quences of entities are systematically transformed into vector
representations using word and sub-word embedding tech-
niques. We show the effectiveness of such representation
through two new toy examples, as well as referring to re-
cent published examples from the literature. As systems and
network data are rife with sequential events, we believe that
the scope for potential applications of bimodal data repre-
sentation learning scheme such as the one proposed here are
broader than the illustrative toy cases. Relevant data not con-
sidred in this preliminary work include sequences of IP ad-
dresses, BGP advertisements or routing events, system logs,
alarms, etc., and applications are likewise numerous.

Yet, network data is more complex than the co-occuring
sequences of events and quantities illustrated in this paper.
As such, we believe the introduced bimodal representation
to be a useful conceptual framework – otherwise stated, bi-
modality is only the starting point of the journey towards
modeling more general multi-modality network data. For in-
stance, as entities often exhibit complex relationships that
can be represented by time-evolving graphs, Graph Neural
Networks (GNN) and graph embedding techniques seem to
be another necessary piece in the quest toward multi-modality.
Incorporating these pieces in the bigger puzzle of network
data representation remains an interesting open research ques-
tion for the networking community as a whole.
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