
YouTube All Around: Characterizing YouTube from
Mobile and Fixed-line Network Vantage Points

Pedro Casas, Pierdomenico Fiadino, Arian Bär, Alessandro D’Alconzo
FTW - Telecommunications Research Center Vienna

{surname}@ftw.at

Alessandro Finamore, Marco Mellia
Politecnico di Torino

{surname}@tlc.polito.it

Abstract—YouTube is the most popular service in today’s
Internet. Its own success forces Google to constantly evolve its
functioning to cope with the ever growing number of users watch-
ing YouTube. Understanding the characteristics of YouTube’s
traffic as well as the way YouTube flows are served from the
massive Google CDN is paramount for ISPs, specially for mobile
operators, who must handle the huge surge of traffic with the
capacity constraints of mobile networks. This papers presents a
characterization of the YouTube traffic accessed through mobile
and fixed-line networks. The analysis specially considers the
YouTube content provisioning, studying the characteristics of the
hosting servers as seen from both types of networks. To the
best of our knowledge, this is the first paper presenting such a
simultaneous characterization from mobile and fixed-line vantage
points.

Keywords—YouTube; Google; Content Delivery Networks; Mo-
bile Networks; Traffic Measurements; EU project mPlane.

I. INTRODUCTION

YouTube is the most popular video streaming service in
today’s Internet, and is responsible for more than 30% of
the overall Internet traffic [1], [2]. Every minute, 100 hours
of video content are uploaded, and more than one billion
users visit YouTube each month1. This enormous popularity
poses complex challenges to network operators, who need to
design their systems properly to cope with the high volume
of traffic and the large number of users. The challenges
are bigger for mobile operators, who have to deal with an
ever-increasing traffic volume with the capacity constraints of
mobile networks, and in a much more competitive market.
Indeed, mobile makes up to almost 40% of todays YouTube’s
global watch time, and video traffic accounts for more than
30% of the downstream peak traffic in large-scale cellular
networks such as AT&T in the US [4]. Finally, the provisioning
of YouTube through the massive Google CDN [10] makes the
overall picture even more complicated for ISPs, as the video
requests are served from different servers at different times.
The highly distributed architecture and dynamic behavior of
large CDNs allow achieving high availability and performance;
however, content delivery policies can cause significant traffic
shifts in just minutes, resulting in large fluctuations on the
traffic volume carried through the ISP network paths.

These observations have motivated a large research effort
on understanding how YouTube works and performs [5]–
[8], covering aspects such as content delivery mechanisms,

The research leading to these results has received funding from the European
Union under the FP7 Grant Agreement n. 318627, “mPlane”.
1http://www.youtube.com/yt/press/statistics.html

video popularity, caching strategies, and CDN server selection
policies among others. These papers focus exclusively on
YouTube as observed in fixed-line networks. In this paper
we take a step further on the characterization of YouTube,
additionally considering the impact of the type of network on
the specific flow characteristics and provisioning behavior of
the underlying servers. In particular, we perform a comparison
of how YouTube is provisioned in fixed-line and mobile net-
works, analyzing three days of YouTube traffic traces collected
in both networks. The insights of our analysis are particularly
useful for the ISP, who usually has a hard time in figuring
out where are the problems of the service delivery when
their customers experience poor performance with YouTube.
In the EU project mPlane2 we are developing a global Internet-
scale measurement platform to better understand and diagnose
performance degradation events in large-scale services such as
YouTube, and this study provides rich input to better develop
the measurement and analysis processes.

The main contribution of this paper is providing a first
analysis of YouTube from both fixed-line and mobile vantage
points. To the best of our knowledge, this is the first paper
presenting such a simultaneous characterization of YouTube.
In particular, we find out that the wide-spread usage of caching
in mobile networks provides high benefits in terms of delay
to the contents as well as downlink throughput. In addition,
we identified marked variations on the delay from the fixed-
line vantage point to the YouTube servers, suggesting either
a widely spread and heterogeneous server farm behind the
YouTube front-ends, or the presence of a highly dynamic path-
changes policy in the interconnection to the preferred YouTube
servers.

The remainder of this paper is organized as follows: Sec.
II describes the datasets we use, and reports the analysis on
the servers infrastructure providing YouTube in both networks,
particularly studying the latency to the video contents and the
provisioning dynamics. Sec. III analyzes the characteristics of
the YouTube traffic as observed in both networks, as well as
the delivery performance in terms of downlink throughput from
the different Autonomous Systems (ASes) hosting YouTube
videos. Finally, Sec. IV concludes this paper.

II. YOUTUBE HOSTING INFRASTRUCTURE

Google replicates YouTube content across geographically
distributed data-centers worldwide, pushing content as close
to end-users as possible to improve the overall performance

2http://www.ict-mplane.eu/



Autonomous System # IPs #/24 #/16

All server IPs fixed-line 3646 97 22
15169 (Google) 2272 60 2
43515 (YouTube) 1222 12 1
36040 (YouTube) 43 2 2

All server IPs mobile 2030 63 10
15169 (Google) 1121 38 2
43515 (YouTube) 844 15 2
LISP 35 4 3
36040 (Google) 26 5 3

Table I. NUMBER OF IPS AND PREFIXES HOSTING YOUTUBE, AS
OBSERVED IN BOTH FIXED-LINE AND MOBILE NETWORKS.

of the video content provisioning, minimizing the effects of
peering point congestion and enhancing the user experience.
Google maintains a latency map [10] between its servers and
network prefixes aggregating geographically co-located users,
in order to redirect their requests to the closest server in terms
of latency. In addition, it employs dynamic cache selection
strategies to balance the load among its servers, handle internal
outages, manage scheduled updates and migrations, etc.. In
this section we study this complex infrastructure for the case
of YouTube, as observed from two different vantage points,
located in a fixed-line network and a mobile network.

A. Traffic Datasets

The two datasets correspond to almost 90 hours (from
Monday till Thursday) of YouTube flows collected at two
major European ISPs during the second quarter of 2013. In
the fixed-line network, the monitored link aggregates 20,000
residential customers accessing to the Internet through ADSL
connections. Flows are captured using the Tstat passive mon-
itoring system [14]. Using Tstat filtering and classification
modules, we only keep those flows carrying YouTube videos.
In the mobile network, flows are captured at the well known Gn
interface, and filtered using the HTTPTag traffic classification
tool [13] to keep only YouTube flows. To preserve user privacy,
any user related data (e.g., IMSI, MSISDN) are removed on
the fly, whereas any payload content beyond HTTP headers
is discarded. Both datasets are imported and analyzed on-line
through the data stream warehouse DBStream [15]. Finally,
using the server IP addresses of the flows, the complete dataset
is complemented with the name of the ASes hosting the
content, extracted from the MaxMind GeoCity databases3.

B. Server Infrastructure Hosting YouTube

Table I reports the number of unique server IPs serving
YouTube in both networks, as well as the ASes holding the
major shares of servers. To understand how these IPs are
grouped, the table additionally shows the number of IPs per
different network prefix. Even if the number of customers
associated to the mobile network traces is much larger than
in the fixed-line network, the number of unique server IPs
observed in the latter is almost the double, with more than
3600 different IPs in the 90 hours. In both cases, two Google
ASes hold the majority of the IPs (i.e., AS 15169 and AS
43515), grouped in a small number of /16 subnets. In the
mobile network we also include the observed IPs of the Local
3MaxMIND GeoIP Databases, http://www.maxmind.com.

(Network) Autonomous System % bytes % flows

(FL) 15169 (Google) 80.8 77.3
(FL) 43515 (YouTube) 19.1 22.5

(M) LISP 69.3 66.7
(M) 15169 (Google) 30 32.7

Table II. NUMBER OF BYTES AND FLOWS PER AS HOSTING YOUTUBE
IN FIXED-LINE (FL) AND MOBILE (M) NETWORKS.

ISP (LISP), which plays a key role in the delivery of YouTube,
due to the extensive usage of content caching. Indeed, it is very
common in mobile networks to have forwarding caches at the
edge of the network to reduce latency and speed up content
delivery [4]. Even though the impact of video caching on the
Radio Access Network is limited, ISPs might prefer to reduce
the load on the transport network to both reduce peering costs
and improve closeness to the content.

Table II shows that about 80% of the YouTube volume
and number of flows are served by the AS 15169 in the fixed
network, and up to 70% of the traffic is served by IPs owned
by the LISP in the mobile network. This correlates pretty
well with the fact that about 65% of the HTTP video content
observed in the mobile network of AT&T in the US can be
cached at the edge in standard forwarding proxies [4]. Still, we
can not say from our analysis whether these IPs correspond
to content caching performed by the LISP or also to Google
servers deployed inside the ISP, which is a common approach
followed by Google to improve end-user experience, known
as Google Global Cache (GGC)4. In fact, a large share of
YouTube content is normally transparent to middle boxes, as
videos are marked as “no-cache”. We plan to further study this
in the future.

To appreciate which of the aforementioned IP blocks
host the majority of the YouTube flows, figure 1 depicts the
distribution of the IP ranges and the flows per server IP.
According to figures 1(c) and 1(d), the majority of the YouTube
flows are served by two or three well separated /16 blocks in
the fixed-line and mobile networks respectively. Interestingly
enough, only a limited fraction of YouTube traffic is served
from AS 43515 in the mobile network. Figure 2 additionally
depicts the number of flows served per IP in both networks.
Separated steps on the distributions evidences the presence of
preferred IPs or caches serving a big number of flows, which
are most probably selected by their low latency towards the
end customers.

Finally, we study the dynamics of the traffic provisioning
from the aforementioned ASes. Figure 3 depicts (a,b) the
number of active IPs and (c,d) the flow counts per hour
(normalized) in both networks during three consecutive days.
In both networks, the active IPs from either AS 43515 or AS
15169 show an abrupt increase at specific times of the day;
for example, about 200 IPs from AS 43515 become active
daily at about 10:00 in the fixed-line network, whereas IPs
from AS 15169 almost triple at peak hours (between 17:00
and 23:00) in the mobile network. Note that the number of
active IPs from the LISP is constant during the whole period,
showing their main role in the delivery of YouTube flows.
In terms of flow counts, figure 3(c) evidences a very spiky
behavior in the flows served from AS 43515, and some of
4https://peering.google.com/about/ggc.html
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(a) IPs hosting YouTube - fixed-line. (b) IPs hosting YouTube - mobile.
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(c) Flows per server IP - fixed-line. (d) Flows per server IP - mobile.

Figure 1. IP ranges distribution and flows per server IP hosting YouTube.
The majority of the YouTube flows are server by very localized IP blocks.
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(a) Flows per IP in fixed-line. (b) Flows per IP in mobile.

Figure 2. Flows per IP and per AS. Clear sets of IPs serve a large share of
the flows, evidencing the presence of preferred caches.

the load balancing policies followed by Google in the region
of the fixed-line ISP, e.g., a drastic switch from AS 15169
to AS 43515 of the flows served at about 18:00. In the
mobile network, the LISP servers handle the majority of the
flows daily, and as a consequence, the dynamics of the flow
counts are much smoother. This indirectly implies that the load
forecasting from each of the servers is much straightforward
in the mobile network, resulting in a potentially much easier
traffic management at the core network.

C. How Far are YouTube Videos?

We investigate now the latency and the location of the
previously identified servers, considering the distance to the
vantage points in terms of Round Trip Time (RTT). The RTT
to any specific IP address consists of both the propagation
delay and the processing delay, both at destination as well
as at every intermediate node. Given a large number of RTT
samples to a specific IP address, the minimum RTT values
are an approximated measure of the propagation delay, which
is directly related to the location of the underlying server. It
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(a) IPs per hour hosting YouTube - fixed-line. (b) IPs per hour hosting YouTube - mobile.
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(c) Flow counts per hour - fixed-line. (d) Flow counts per hour - mobile.

Figure 3. IPs and flows per hour during 90 hs. The glitch in the flow counts
in the mobile network is caused by maintenance of the monitoring probe.
follows immediately that IPs exposing similar min RTT are
likely to be located at a similar distance from the vantage
point, whereas IPs with very different min RTTs are located
in different locations.
RTT measurements are passively performed on top of the

YouTube flows in the fixed-line network. Mobile networks
usually employ Performance Enhancement Proxies (PEPs)
to speed-up HTTP traffic, and therefore, passive min RTT
measurements on top of HTTP traffic provide incorrect results
[12]. We therefore consider an active measurement approach in
the mobile network, running standard pings from the vantage
point to get an estimation of the min RTT to the servers. We
then weight the obtained min RTT values by the number of
flows served by each IP to get a rough picture of where the
flows are coming from, similar to [11].
Figure 4 shows the distribution of the min RTT values

for the flows observed in both networks. Steps in the CDF
suggest the presence of different data-centers or clusters of co-
located servers. Figure 4(a) shows that about 65% of the flows
in the fixed-line network come from servers most probably
located in the same country of the ISP, as min RTT < 5 ms.
This is coherent with the fact that Google selects the servers
with lower latency to the clients. A further differentiation
by AS reveals that the most used servers in AS 15169 are
located much closer than the most used servers in AS 43515.
As depicted in figure 4(b), the lion share of the flows in
the mobile network comes from the LISP servers, which are
located inside the ISP (min RTT < 2 ms). The rest of the
flows served from AS 15169 are located at potentially two
geographically different locations, one closer at around 40 ms
from the vantage point, and one farther at about 70 ms.
The richness of the passive RTT measurements performed

in the fixed-line network permits to further study the dynamic
behavior of the servers’ selection and load balancing strategies
used by Google to choose the servers. Figure 5(a) depicts
the variation of the distribution of min RTT measured on the
YouTube flows for a complete day, considering contiguous
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Figure 4. min RTT to servers in different ASes. Latency is passively measured
on top of the YouTube flows in the fixed-line network, whereas active RTT
measurements are performed in the mobile network.
time bins of 3 hours length. Correlating these results with
those in figure 3(c) permits to better understand the daily
variations. Whereas the majority of the flows are served from
very close servers until mid-day, mainly corresponding to AS
15169, servers in farther locations are additionally selected
from 14:00 on, corresponding to the increase in the number of
flows served from AS 43515.
Finally, figures 5(b) and 5(c) reveal a very interesting

pattern which could be potentially harmful for the perfor-
mance of the video delivery, but that we were not able to
diagnose in current paper. The figures depict the min RTT
values observed during a complete day for flows hosted at
different IPs in two /24 subnets at AS 15169 and AS 43515,
namely 74.125.13.0/24 and 208.117.250.0/24 respectively.
The interesting observation is that the min RTT to the same set
of IPs varies with a very structured pattern, presenting different
clusters of min RTT values in both subnets. For example, min
RTT values of 5, 9, and 14 ms are systematically observed for
the flows served from IPs at 208.117.250.0/24.
These marked variations could be the result of strong and

very periodic congestion events, which is in fact very unlikely.
We tend to believe that either a very spread and heterogeneous
server farm behind the YouTube front-end servers in the
corresponding IPs, or the presence of a highly dynamic path-
changes policy in the interconnection to the specific YouTube
servers is the origin of such a behavior. A deeper study of
these patterns is left for future work.

III. YOUTUBE TRAFFIC AND PERFORMANCE
We study now the characteristics of the YouTube flows as

observed from both vantage points, as well as the performance
achieved in terms of downlink throughput. Figure 6 depicts the
distribution of flow size for the different hosting ASes. Figure
6(a) shows that about 20% of the flows served in the fixed-line
network are smaller than 1 MB, and that flows served by the
AS 43515 are slightly smaller than those provided by the AS
15169 in this network.
The CDF reveals a set of marked steps at specific flow

sizes, for example at 1.8 MB and 2.5 MB. Our measurements
and studies performed in [3] reveal that YouTube currently
delivers 240p and 360p videos in chunks of exactly these
sizes, explaining such steps. A similar behavior is observed for
chunks of bigger sizes. About 75% of the flows are smaller
than 4 MB, 90% of the flows are smaller than 10 MB, and
a very small fraction of flows are elephant flows, with sizes
higher than 100 MB.
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(a) YouTube flow size - fixed-line. (b) YouTube flow size - mobile.

Figure 6. YouTube flows sizes. The steps in the CDF at sizes 1.8 MB, 2.5
MB, 3.7 MB, etc. correspond to the fixed chunk-size used by YouTube to
deliver videos of different resolutions and bitrate.
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(a) YouTube flow duration - fixed-line. (b) YouTube flow duration - mobile.

Figure 7. YouTube flows duration. About 85% of the flows observed in both
networks are shorter than 90 seconds. A large share of flows have an average
duration of about 30 seconds.

The flows considered in figure 6(b) for the mobile network
are only those with a size bigger than 1 MB. This filtering
is performed as a means to improve the estimation of the
downlink throughput in our traces. Surprisingly, the flows
served by the AS 43515 in the mobile network tend to be
rather larger than those provided by the other ASes, and more
than 20% of the flows served by this AS are bigger than 10
MB. The interesting observation comes when analyzing the
size of the flows served by the LISP. The CDF reveals a very
concentrated flow size between 2 MB and 4 MB, suggesting
that the cached contents (or those served by YouTube servers
inside the ISP) could potentially cover, at least in terms of
flows size, 75% of the flows observed in the fixed-line network.
We have not investigated the characteristics of the YouTube
videos hosted by the LISP IPs and those served in the fixed-
line network, which would provide further insights about the
type of contents that are potentially cacheable. We plan to do
so in future studies, following the approach used in [4].

Figure 7 depicts the distribution of the flows duration,
in minutes. The flow duration in both networks is below 3
minutes for about 95% of the total flows. The abrupt step in the
CDF of the flows observed in the fixed-line network at about 30
seconds is most probably linked to the aforementioned video
chunk sizes, but we were not able to verify this observation.
About 85% of the flows observed in both networks are shorter
than 90 seconds. Similar to the flow size, the flows served
from AS 43515 are rather longer in the mobile network, with
more than 20% of the flows lasting more than 3 minutes.
Given the small fraction of traffic served from AS 43515 in
the mobile network, we can not say for sure that the behavior
of the servers in this AS is different when it comes to different
types of networks. Still, the important differences in the
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Figure 8. Average YouTube flow downlink throughput per AS. Flows served
by the LISP are the ones achieving the highest performance, evidencing the
benefits of local content caching and low-latency servers.

flow characteristics coming from AS 43515 in both networks
might suggest some kind of network (or device) awareness
on the way YouTube video is provisioned, as observed in [8].
Finally, and also correlating with previous observations, the
distribution of the duration of the flows served by the LISP
IPs is concentrated around 30 seconds, matching pretty well
the aforementioned abrupt step in the CDF of the flow duration
in fixed-line networks.

To conclude the study, figure 8 reports the distribution
of the average downlink throughput per flow measured in
both networks, discriminating by hosting AS. The downlink
throughput is the main network performance indicator that
dictates the experience of a user watching YouTube videos
[9]. Both figures 8(a) and 8(b) consider only flows bigger
than 1 MB, to provide more reliable and stable results (i.e.,
avoid spurious variations due to the TCP protocol start-up).
The downlink throughputs achieved in both networks are
rather similar, with more than 15% of the flows achieving
a throughput above 2 Mbps. This suggests that the downlink
throughput is partially governed by the specific video encoding
bitrates and the flow control mechanisms of YouTube and
not exclusively by the specific access technology. Still, when
analyzing the performance results per AS, it is evident that the
flows served by the LISP are the ones achieving the highest
performance, with an average flow downlink throughput of 2.7
Mbps. This out-performance evidences the benefits of local
content caching and low-latency servers for provisioning the
YouTube flows.

IV. CONCLUSIONS
In this paper we have presented a characterization of the

YouTube service from traffic traces captured at both mobile
and fixed-line networks. To the best of our knowledge, this is
the first paper presenting such a simultaneous characterization
of YouTube. Besides describing and analyzing the servers
infrastructure hosting the flows, as well as the characteristics
of the traffic itself, we have shown that the usage of caching
in mobile networks provides high benefits in terms of delay
to the contents as well as downlink throughput. We have
also identified a very interesting behavior on the latency to
the YouTube servers in the fixed-line network, which we are
planning to further investigate as part of our future work. We
believe that the insights provided in this paper will improve
the capabilities of measurements-based frameworks to better
diagnose performance issues in large-scale Internet services
such as YouTube. In particular, we are applying the insights
of this work into the EU project mPlane, developing a large-
scale anomaly detection and root cause analysis approach for
CDN-based services.
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