
Generalizing Critical Path Analysis on Mobile Traffic
Gioacchino Tangari, Alessandro Finamore†,Diego Perino⋆,

University College London, †O2 - Telefónica UK Ltd., ⋆Telefónica Research
gioacchino.tangari.14@ucl.ac.uk, alessandro.finamore1@telefonica.com, diego.perino@telefonica.com

ABSTRACT
Critical Path Analysis (CPA) studies the delivery of webpages
to identify page resources, their interrelations, as well as
their impact on the page loading latency. Despite CPA being
a generic methodology, its mechanisms have been applied
only to browsers and web traffic, but those do not directly
apply to study generic mobile apps. Likewise, web browsing
represents only a small fraction of the overall mobile traffic.
In this paper, we take a first step towards filling this gap
by exploring how CPA can be performed for generic mo-
bile applications. We propose Mobile Critical Path Analysis
(MCPA), a methodology based on passive and active net-
work measurements that is applicable to a broad set of apps
to expose a fine-grained view of their traffic dynamics. We
validateMCPA on popular apps across different categories
and usage scenarios. We show that MCPA can identify user
interactions with mobile apps only based on traffic monitor-
ing, and the relevant network activities that are bottlenecks.
Overall, we observe that apps spend 60% of time and 84% of
bytes on critical traffic on average, corresponding to +22%
time and +13% bytes than what observed for browsing.

1 INTRODUCTION
Web browsing has been at the core of Internet services since
its early days. Significant attention has been devoted to define
metrics [6, 7, 22, 36] and methodologies [12, 17, 22, 38] to
unveil web pages content delivery dynamics, and systems
to optimize content delivery [8, 23, 25, 39]. These efforts are
justified to improve end-users quality of experience (QoE),
while service providers are incentivized to optimize their
systems as their revenues are linked to users QoE [13].

However, web browsing is not at the center of user activi-
ties on mobile devices anymore. Recent reports [5, 11] show
that users spend less than 10% of their time browsing, and
more than 35% on apps different than Facebook, streaming,
gaming, and instant messaging. Such a trend is challeng-
ing also ads platforms where browsing on mobile devices
generates half the conversion rate than desktop [10, 27].
This progressive change in user interests and usage pat-

terns is creating a gap in the literature. State of the art metrics
and methodologies have been forged in the context of web
browsing, but they do not necessarily apply to generic mo-
bile traffic. This is due to two main factors. First, there is
the need to define a delivery deadline capturing how long

it takes to obtain some content. The most popular exam-
ple is the page load time (PLT), which measures the time
elapsed between a user clicking a URL and the browser firing
the onLoad event indicating that the page has been loaded.
Given the definition, such metric exists only for browsers. A
more generalized delivery deadline is the Speed Index (SI),
which measures the average time at which the visible parts
of the page are displayed [18]. By focusing on the rendering
process, SI is generic enough to be applied to services other
than browsing, but it is an invasive technique as requires
video screen recording, so it is not suitable to be deployed
at-scale. Overall, the literature offers a flourished set of met-
rics (Yslow, Object Index, DOMLoad, etc.) [6] but they all
suffer from the lack of generalization or instrumentation
complexity. Hence, the first challenge we identify is how
can we define a delivery deadline that is generic enough and
applicable to monitor generic mobile traffic?

Second, web pages structure is commonly leveraged to in-
vestigate content delivery performance. For instance, critical
path analysis (CPA) aims to identify which objects download
impact a defined delivery deadline (e.g., PLT), hence unveil-
ing possible bottlenecks [8, 19, 38]. This analysis is possible
because web page object relationships are easy to extract
(e.g., inspecting source files, or the Document Object Model
- DOM). Unfortunately, mobile content is not necessarily
delivered in the form of a web page. Even if dependencies
between objects are expected to be present, their identifica-
tion is not trivial. Hence, the second challenge is how can we
identify which flows carry critical content for QoE, and how
they relate to each other?

In this paper we presentMCPA, a methodology that gen-
eralises CPA for mobile traffic. MCPA brings fine-grained
visibility into any mobile app traffic, and further highlights
which components are critical. To do so, the traffic is pro-
cessed in three phases. First, the traffic aggregate is split into
activity windows, each (possibly) corresponding to different
user interactions with an app. Second, within the activity
windows, a download waterfall is constructed to capture
traffic dynamics over time, different metrics related to L4
and L7 dynamics are collected, and a delivery deadline is
established. Finally, within each waterfall we identify which
activities impact performance.

We validate our methodology on 18 popular apps and web
browsing as well, generating traffic from an instrumented
Android phone. We show that using a purely based traffic

ar
X

iv
:1

90
6.

07
67

4v
1

 [
cs

.N
I]

 1
8

Ju
n

20
19

monitoring methodology,MCPA is sufficient to capture fine-
grained traffic dynamics. Specifically, we can split aggregate
traffic into windows each associated to a different user ac-
tion with more than 84% accuracy (§5). We define two traffic
metrics based on monitoring the volume of bytes exchanged,
and show that they well resemble the more complex state of
the art AFT and SI (§6). Finally, we perform CPA by mean of
active experiments. When considering browsing,MCPA out-
put is a superset of the critical traffic identified by state of the
art Google Lighthouse [19]. As for mobile applications, the
time spent on the critical path is 55% in average, significantly
larger than browsing where the time spent on critical path
is 38%. We observe this time is mostly related to application
control logic. MCPA source code and experimental datasets
are publicly available.1

2 RELATEDWORK ANDMCPA
CHALLENGES

Mobile traffic has mostly been studied at an aggregated level
(per-connection latency, throughput, etc.) [15, 24, 28, 32],
or focusing on specific protocols (e.g., DNS [4], SPDY [14],
MPTCP [20, 21]). Exceptionally, a few studies take a step
further. For instance, Panappticon [41] and AppInsight [31]
enable fine-grained view on users engagement with apps by
respectively tapping into Android components and studying
app binary files; QoE Doctor [9] focuses on performance
issues (e.g., high latency) by measuring radio resource allo-
cation and user interface interactions; Prometheus [2] tries
to bridge network metrics with user experience via machine
learning.
Despite their merits, these tools focus on system infor-

mation (e.g., radio resources, operating system calls, multi-
threading) rather than digging into the role of content down-
load and network protocols dynamics. Conversely, studies
focusing on web traffic, despite being limited to this traffic
class only, represent the state of the art regarding how to
dissect traffic dynamics. In the remainder of this section we
review this literature, and we highlight the challenges in
applying currently available methodologies to study generic
mobile traffic.

2.1 Performance metrics and delivery
deadlines

Beside generic metrics such as latency and throughput, most
of the metrics in literature are defined in the context of
web traffic. We can split those into two classes: objective
metrics are delivery deadlines quantifying the time needed
to obtain some content [1, 14, 15, 26, 29]; subjective metrics
are defined considering direct feedback from end-users (e.g.,

1https://github.com/finale80/mcpa

mean opinion score - MOS) and can include factors beyond
content delivery [6, 16, 23, 35]. For the purpose of this work,
we focus only on objective metrics, which we can further
split into time instant and time integral metrics.
Time instant metrics capture specific instants across the
whole events timeline of the content delivery. The most ac-
curate instant metric is Google’s AFT which measures the
time at which the content shown in the visible part of a web-
page is completely rendered [7]. This definition is not web
traffic specific, although the metric has been applied only to
browsing traffic. AFT computation requires a video screen
capture, and accurate video post-processing as the presence
of dynamic elements, such as animations and roll ads, can
introduce biases [35]. These costs limit the use of AFT for
small scale studies on instrumented devices. A recent work
shows that AFT could be approximated leveraging informa-
tion about objects position in a webpage, but this technique
is complex to be applied outside browsers [12]. Despite being
less accurate, PLT is the most widely adopted metric. Other
known deadlines are the Time To First Byte (TTFB), the Time
To First Pixel (TTFP), the time at which the parsing of the
Document Object Model (DOM) is completed. W3C has also
defined the navigation timing guidelines [37], a series of
specific events happening during a webpage rendering, but
their implementation may differ across browsers.
Time integralmetrics capture the cumulative effect of events
until a specific point in the timeline is reached. The most
popular example is Google’s SI [18], which is obtained by
integrating over time the residual rendering left to reach the
AFT. Given the definition, SI suffers from the same limitations
AFT does. ObjectIndex and ByteIndex are two alternative
integral metrics that respectively capture the evolution of
objects and bytes delivery until the PLT [6].
Challenges:Metrics like PLT, which are based on internal
application “hooks”, cannot be applied to generic mobile
apps as there are no standard APIs, neither at app nor at
operating system level, to expose these information. Differ-
ently, we argue that AFT and SI are valid delivery deadline
for generic mobile apps, as they capture the actual screen
rendering and do not depend on app internals (§3). However,
their measurement cost is a barrier for their adoption. To
enable at-scale measurement, a cheaper alternative is to opt
for metrics based on passive traffic measurement to compute
either on-device (e.g., via VPN solution which avoid rooting
devices) or in-network (e.g., monitoring middle-boxes are
very common in mobile networks). We are therefore inter-
ested in understanding what passive metrics are available,
when they can be applied, and what bias they introduce with
respect to AFT and SI.

2

https://github.com/finale80/mcpa

2.2 Critical Path Analysis - CPA
CPA allows to dissect traffic dynamics within the boundaries
of a delivery deadline. It has been successfully applied to
understand web traffic, but methodologies and terminology
can vary. To the best of our knowledge, the first tool leverag-
ing CPA is WProf [38] (and its follow ups Shandian [40], and
WProfX [?]), a system that requires augmenting the browser
with a profiling engine to capture the dependency graph for
any given webpage. Such graph structures the activities re-
lated to both rendering as well as content dependencies as
visible in the webpage DOM. Given a graph, WProf defines
the critical path as the longest path of activities such that
reducing the duration of any activity not on the critical path
does not impact the webpage PLT.
Recently, Google added Lighthouse [19] to the Chrome

devtools suite to automate webpages auditing. Lighthouse
offers a richer output than WProf, including different dead-
lines (First Meaningful Painting, First CPU idle, SpeedIndex,
etc.), as well as a report on resources that can block the ren-
dering. To some extent, Lighthouse output is an evolution of
a webpage download waterfall, i.e., a gantt chart picturing the
evolution of the network communications triggered during
a webpage load. All modern browsers allow to dissect traffic
dynamics via a waterfall, and systems like KLOTSKI [8] fur-
ther build on waterfalls to find activity patterns invariant to
PLT performance.
Challenge: All these tools have slightly different critical
path definitions. They also heavily rely on “hooks” specific
to browsers internals, so they are unappealing to study mo-
bile apps. At the core of CPA there is the need to identify
dependencies between activities, and this is particularly chal-
lenging to do only based on passive measurements. Hence,
we want to understand if active experiments, such as traffic
throttling, can complement passive measurements to create
a more effective methodology to spot traffic impacting the
delivery deadline.

3 MCPA OVERVIEW
In this section, we introduce MCPA, our methodology to
perform CPA on generic mobile apps. First, MCPA identifies
activity windows, i.e., user interactions with apps. Each activ-
ity window is profiled to extract network activities, measure
the delivery deadline, and finally extract the critical traffic.
Activity windows (§5). In the context of web traffic, CPA
is performed for every webpage retrieval. This includes all
activities in response to directly typing a URL, refreshing or
aborting the load of a webpage, clicking a link within a page,
etc. For webpages, those activities can be easily identified us-
ing APIs provided by browsers. However, such mechanisms
are not available to study generic mobile apps, so alterna-
tive approaches need to be considered. One option is to log

user clicks, scrolls, currently displayed apps, and use such
detailed information to partition the traffic based on user
engagement. However, in an at-scale scenario, i.e., without
full control on the devices, logging actual user interactions
is almost impossible. Another option available is to apply
“cheaper” passive traffic analysis heuristics. In fact, mobile
traffic is bursty in nature [15, 34], i.e., the traffic presents ac-
tivity windows when the user is interacting with the phone,
interleaved by “idle” periods. An optimal split associates a
different user action to each window, but depending on traf-
fic conditions and apps characteristics this might not always
be possible. In §5 we discuss heuristics for partitioning the
traffic based on passive measurements and we evaluate their
accuracy.
Download waterfall and performance metrics (§6). For
each activity window we need to define a set of metrics and
identify the activities involved in the delivery of contents.
CPA for webpages requires to instrument the browser to
extract all activities participating to both the download and
rendering tasks. However, to do the same for generic mobile
apps would require to either reverse engineer every app, or
to instrument their source code or the operative system [31,
41]. The approach of MCPA is to focus only on network
activities and to report per-flow metrics for both transport
(TCP, UDP, QUIC) and application (DNS, HTTP, HTTPS/TLS,
Facebook Zero - FB0) protocols. These activities are visually
represented in the form of a download waterfall.

Once the different activities are identified, a delivery dead-
line should be set to capture the quality of experience per-
ceived by users. In a fully controlled environment, the best
available option is to apply AFT and SI (§2). We argue they
are still valid to study generic mobile traffic, but we are not
aware of any work in the literature proving this. Indeed, the
end of a user action on an app is generally marked by visual
changes, and this applies to apps wrapping browser(-like)
functionalities (e.g., social, news, e-commerce), as well as
to more interactive apps such as messaging ones (e.g., the
end of a message delivery triggers a check mark on screen).
However, both AFT and SI capture events related to render-
ing. In an at-scale scenario screen recording is not possible,
so rather than looking for exact estimates of user experi-
ence, we are interested in defining a proxy for AFT/SI, yet
sufficient to identify critical activities, based on passive mea-
surements. In §6 we discuss howMCPA creates waterfalls,
we introduce our delivery deadlines, and we compare them
against AFT/SI.
Critical Path (§7). Finally,MCPA identifies which activities
of a waterfall constitute the critical path. To do so, we rely on
active experiments, i.e.,we observe how the delivery deadline
changes when throttling the traffic on a per-domain basis. In
other words, if a macroscopic delay is observed on the overall
delivery when delaying some traffic, we can conclude that a

3

domain, and the related traffic, is critical. The same principle
also applies to discover relationships among domains.

MCPA is built upon pcap2har, a Python open source tool
transforming pcap files into webpages HAR files,2 which
we modified and extended to handle generic mobile traffic
(including TLS/HTTPS, QUIC, FB0).

4 DATASET
Mobile Apps.We select 18 popular apps across 7 categories:
Social (Twitter, Facebook, Instagram), Messaging (WhatsApp,
SnapChat, Messenger), News (CNN, BBC, Newsbreak), Geo-
based (Google Maps, Uber), Shopping (Letgo, Amazon), E-
mail (Microsoft Outlook, Gmail), and Streaming (Youtube,
Spotify, Soundcloud). We intentionally left out Games and
Productivity apps as they are known to generate little net-
work traffic, which is likely related to ads [3]. Conversely, we
focus on very popular apps according to both vendors [33],
and 3rd party3 rankings, to create a set of apps sufficiently
diversified to assess if there is a case to use passive and active
analysis to perform CPA. We further consider web browsing
by studying the top-100 Alexa websites (alexa-T100).
Traffic Scenarios.We consider two traffic scenarios: app-startup
and app-click. The former considers the traffic generated in
the first 60s after the app is launched.4 In the latter, relevant
user interaction sequences are emulated based on common
behaviors with the apps, such as select a video/song, a news,
scroll an email, send a chat message, etc. To this end, we de-
fine ad-hoc patterns, each with multiple input tap events
uniformly distributed within [0,10s]. For example, for the
Letgo shopping app, the sequence is: search by category;
show top results; select random item; show price and geo-
graphical location (all sequences listed in Table 2).
Data collections.Our experiments are performed on aNexus
5 running Android 6.0.1, and using a SIM of a European
mobile carrier. For each app and scenario we ran 10 exper-
iments, with the device instrumented to collect pcap files
(via tcpdump) as well as the video screen record (via Android
screenrecord utility5). For alexa-T100 dataset, we also use
WProfX, Google Lighthouse and Chrome’s devtools to ex-
tract performance indicators and critical path information.
In regards to video recording, as shown in [6] the additional
computation can bias the experiments, artificially slowing
the rendering. We verified that this effect is not present in
our results (§6).

 0

 200

 400

 600

 800

 1000

 1200

00 10 20 30 40

v
o
lu
m
e

[k
B
]

time [s]

clic
k
clic
k
clic
k

clic
k

00 10 20 30 40

ne
w

ac
tiv
ity

win
do
w

if α b

= 2
00
kB

Δ

g
ra
d
ie
n
t

b

time [s]

αt = 2.5s
αt = 5s

Figure 1: Activity windows: cumulative traffic when
using the CNN app (left); traffic gradient ∇b (right).

5 ACTIVITY WINDOWS
Mobile devices are constantly connected to the network,
so they generate a continuous stream of connections. Con-
versely, user engagement is occasional, hence the connec-
tions stream has to be processed in order to identify those
time intervals where users interact with the device. Ideally,
the traffic stream should be split so that each partition corre-
sponds to a relevant QoE-related user interaction. We call
these partitions activity windows. Such windows can be ob-
tained using granular device-screen logs reporting on clicks,
scrolls, etc., at the cost of running tests only on a limited set
of instrumented phones.
To enable large scale analysis built on network measure-

ments, the same split should be performed by looking at
traffic characteristics only. To this end, we can exploit the
bursty nature of mobile traffic, where bursts of bytes are
likely to correspond to user engagement with an app. For
instance, consider Fig 1(left) showing the cumulative traffic
observed when a user interacts with the CNN app. Notice
how volume abruptly increases in response to users actions.
In this section we investigate how and to what extent traf-
fic bursts and idle periods can be used to identify activity
windows.

5.1 Partitioning policies.
We consider two possible policies to partition the traffic
generated by a mobile device.
Naïve. The first policy relies on a single threshold to identify
“long” idle periods. That is, a connection is associated to a
new window if its traffic starts after an idle period longer
than αt , otherwise it belongs to the current window.

2https://github.com/andrewf/pcap2har
3https://www.androidrank.org
4This time is more than double the maximum startup time observed in our
experiments.
5https://developer.android.com/studio/command-line/adb

4

https://github.com/andrewf/pcap2har
https://www. androidrank.org
https://developer.android.com/studio/command-line/adb

0.0 2.5 5.0 7.5 10.0
t [s]

0.2

0.4

0.6

0.8 Precision
Recall

Figure 2: Sensitivity analysis of the naive policy.

Figure 3: Flow volume as seen by a large European
MNO.

Gradient. A more refined policy creates a new window if
a “large” burst happens after a “long” idle period. To do so,
we combine two thresholds: αt and αb . We use αt to define
a sliding window where we monitor the gradient ∇b of the
volume. For instance, consider αt = 5s. All traffic in the first
5s is accumulated. Then, we progress the sliding window,
accumulating the traffic entering, and removing the one
falling outside the window. In this way ∇b has a positive
slope when traffic is exchanged, and negative (or no) slope
for idle times. Fig. 1(right) reports ∇b for αt = 2.5s and αt =
5s. Using the gradient, we define a new activity window if
we observe at least αb bytes exchanged after an idle period of
αt . For instance, considering αb = 200kB, in Fig. 1(right) ∇b
reaches the threshold at 5.2s and 32s. However, we identify
an activity windows only at 32s as it is preceded by an idle
larger than αt = 2.5s (no windows found for αt = 5s).

0 20 40 60 80 100

0 - 2.5s

2.5 - 5s

5 - 7.5s

7.5 - 10sin
te

r-c
lic

k
in

te
rv

al 80.0

83.3

86.7

94.0

98.0

94.0

89.0

82.0

Recall Precision

Figure 4: Gradient policy sensitivity with respect to
click frequency.

5.2 Validation and sensitivity analysis
Our dataset contains detailed logs of the users click times,
each click corresponding to the beginning of a new activity
window. As such, for a given combination of thresholds, we
can quantify the accuracy of the partitioning by measuring
the Precision as the fraction of partitions detected by our
policies actually matching a click, and the Recall as the frac-
tion of clicks that are identified as activity windows by our
policies. For instance, in Fig. 1 Precision = 1.0 and Recall =
0.25.
Best policy.We find the naïve policy being ineffective. Fig. 2
report Precision and Recall for different values of αt . A small
threshold (αt <1s) leads to over-splitting (high Recall, but
low Precision), while for larger values Recall and Precision
do not go above 50%. Compared to naïve, the gradient policy,
which considers bursts registered after idle periods, signifi-
cantly reduces the over-splitting. By selecting αb = 5kB and
αt = 1s, both Recall and Precision are kept above 70%. We
choose αb to be the median size of a individual transaction
as observed in logs from a large European mobile opera-
tor. Results are reported in Fig. 3, and are consistent with
our datasets. Instead, αt = 1s is considered as a minimum
response time of a user engaging with mobile apps.
Interactivity. We also investigate whether our policy is
sensible to clicks frequency. Fig. 4 reports Precision and
Recall across all apps when varying the frequency of clicks.
Both metrics are above 80% in all scenarions, but there are
two evident trends: Precision decreases when clicks are more
sparse, while opposite is true for Recall.
Further improvements. Performing a grid search to find
thresholds better than the ones selected based on our intu-
ition did not help. However, we found most of the misclassifi-
cation are due to chat apps. Intuitively, as those apps typically
exchange small messages (unless they are video/audio mes-
sages, or images), αb = 5kB is too large. Indeed, applying αb
= 0.25kB only for this app category leads to Recall = 85% and
Precision = 88% across all apps. Although these fine-grained
optimizations could be done on a per-app basis, we argue this

5

0 1000 2000 3000 4000
Time[s]

0

20

40

60

80

100

120

Ac
tiv

e
flo

ws

Figure 5: Example of evolution of the number of active
flows. Regions covered with a shaded rectangle corre-
spond to periods when the phone screen was off.

Figure 6: CDF of the ratio of active windows generated
per minute: synthetic user patterns (left), real users
(right)

is unnecessary, and would be also challenging considering
the large numbers of apps currently available. In fact, even if
our analysis is not exhaustive, two pairs of thresholds cover
a very diversified set of apps. In order to select which pairs
of thresholds to use, we found that basic traffic classification
techniques, based on port numbers, IP addresses, or domain
names, are sufficient. For instance, chat applications use very
few (and specific) domains and/or ports (§7).
Background traffic. One last aspect to consider is the im-
pact of “background” traffic (notifications, emails fetch, etc.)
on the windows partitioning accuracy. We collected several
1-day long traces, mixing periods of activity with silence.
Fig. 5 details one of those examples, showing the number
of active flows highlighting periods where the screen was
on (white background) and off (shaded background). Notice
how when the screen is on, i.e., the user is engaging with
the phone, the number of flows increases, while when the
screen is off flows are progressively closed. Given the ten-
dency to use persistent connections, flows are closed at a
lower pace with respect to when they are opened.We observe

that, while the gradient policy is still sensible to background
traffic, those intervals (i.e., with no user interaction) can be
filtered out by looking at the pace at which activity windows
are generated. Intuitively, when the user is active, multiple
partitions are expected to be generated in a short time, while
this effect is significantly reduced when only background
traffic is present. Fig. 6 shows this effect for both artificial
clicks (monkey - left plot) and a real user (right plot). Notice
how the distribution of rate at which the windows are cre-
ated is macroscopically separated between periods when the
screen is on and off.
Summary. Our results support the idea of identifying ac-
tivity windows via passive measurements. We stress that
the gradient policy is a heuristic, so not meant to be perfect.
Its function is to enable us to focus on traffic dynamics and
CPA knowing that the portion of the traffic under analysis
is likely related to user engagement, hence meaningful to be
dissected.

6 NETWORKWATERFALL AND METRICS
For each identified activity window, MCPA creates a down-
load waterfall detailing traffic dynamics and performance.
Network waterfall.MCPA extracts transport (L4) and ap-
plication (L7) per-flowmetrics. At L4, it computes aggregated
statistics (e.g., total duration, bytes, RTT), as well as protocol
specific information (e.g., TCP, QUIC, FB0 handshake dura-
tion, IP addresses, ports). At L7, MCPA reports on HTTP
transactions (e.g., metadata from request and response head-
ers), TLS handshake (e.g., duration, if the handshake is full or
fast, SNI, ALP protocols), DNS (e.g., domain name, CNAMEs,
query resoution time). Moreover, each flow is split into bursts
by grouping packets when interleaved by more than 2 RTTs.
All the metrics are then represented as a download waterfall,
a relevant visual aid to CPA (§7).
Performancemetrics.As discussed in §2, we consider AFT
and SI suitable to study mobile apps traffic. However, we con-
sider them only as baseline as we aim to avoid on-device
screen recording. We are instead interested in studying the
reliability of objective metrics based on passive traffic mea-
surements. We define the instant metric Transport Delivery
Time (TDT) as the time between the beginning of an activ-
ity window and the 95th percentile of the whole volume
exchanged in the window. We experimented with other per-
centiles too (see paragraph below), but the 95th resulted the
more robust to long tail effect (e.g., keep alive). We also de-
fine the equivalent integral metric Transport Delivery Index
(TDI) as

∫ TDT
0 1 − xB (t)dt , where xB (t) is the percentage of

total volume exchanged in the window up to time t . We high-
light that TDI is similar to the Object Index introduced in [6]
using TDT instead of PLT (recall that PLT does not apply
for generic mobile apps §2). In the remainder of the section

6

Figure 7: TDT and TDI accuracy evaluation.

0 5 10 15 20 25
TDT [s]

20

10

0

10

20

AF
T-

TD
T

[s
]

App-startup

0 5 10 15
TDT [s]

20

10

0

10

20
App-click

BBC
Letgo
Amazon
CNN
Facebook
Messenger
Gmaps
Gmail
YouTube

Instagram
Outlook
NewsBreak
SnapChat
SoundCloud
Spotify
Twitter
Uber
WhatsApp

Figure 8: Per-app instant metrics comparison

5.0 2.5 0.0 2.5 5.0
AFT-TDT [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Web browsing
TDT-100%
TDT-99%
TDT-95%
TDT-90%

10 5 0 5 10 15
AFT-TDT [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

App-startup

TDT-100%
TDT-99%
TDT-95%
TDT-90%

10 5 0 5 10 15
AFT-TDT [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

App-click

TDT-100%
TDT-99%
TDT-95%
TDT-90%

Figure 9: TDT using different percentiles of the bytes cumulative

7

Figure 10: Impact of screen recording.

we investigate the penalties TDT and TDI introduce against
the respective baselines AFT and SI. We consider also PLT
as reference for browsing performance.

6.1 Evaluation
Web Browsing. Fig. 7(left) reports the Cumulative Distri-
bution Function (CDF) of the deltas AFT-TDT and SI-TDI
for alexa-T100 dataset. Both are well centered around zero,
but TDI is a better proxy of SI than TDT is for AFT. Notice
however that AFT-PLT presents a similar distribution as AFT-
TDT. In other words, if PLT is the most popular metric to
measure web performance, TDT is at least comparable. This
is further corroborated considering PLT-TDT which presents
a distribution well centered around zero.
Aggregate apps traffic. Fig. 7(right) reports the CDFs of
AFT-TDT and SI-TDI deltas for both app-startup and app-click
datasets. All curves arewell centered around zero, but app-startup
CDFs present a heavier negative tail. This resembles what
was observed for browsing, i.e., at startup more content is
downloaded than what is required for the visualization, so
TDT and TDI can over-estimate rendering deadlines. TDI is
more sensible to this effect, while for 75% of the experiments
TDT generates a ±1.3s error at most.
Per-app traffic. To further investigate the deviations be-
tween instant metrics, Fig. 8 reports the deltas AFT-TDT
as a function of TDT for each individual app. Considering
app-startup (left plot), besides a few outliers, all apps present
similar behavior, with variable deadlines in absolute scale,
but TDT is triggered slightly after AFT as already observed
in Fig.7(right). For app-click (right plot) errors are further
reduced, with only Amazon showing larger penalties.
TDT sensitivity to percentiles. TDT and TDI capture the
progress of the download by means of a percentile. The
analysis previously reported refers to the 95th percentile

of the volume transfered within an activity window, but
other values are possible. To better investigate the sensitiv-
ity of selecting the percentile to use, Fig. 9 reports the CDFs
of the delta AFT-TDT for web browsing, app-startup, and
app-click respectively. Intuitively, selecting a high percentile
can expose the passive metrics to pre-fetching, i.e., the de-
livery deadline triggers too late due to content downloaded
even if not required for the rendering. Conversely, a small
value instead cause the opposite effect, i.e., the deadline trig-
gers too early. Both effects are clearly visible in Fig 9 CDFs.
Considering browsing (left plot) waiting until all content is
downloaded (TDT-100%) results is a macroscopic delay with
respect to AFT, while 95th and 90th present fairly similar per-
formance. Considering app traffic, app-startup (middle plot),
high percetiles give similar performance, while the 90th per-
centile is less accurate; app-click (right plot) presents very
little differences. Overall, we selected the 95th percentile to
define TDT and TDI as it provides more consistent perfor-
mance across the different types of traffic.
Impact of screen recording. As the video screen record
can be resource demanding, it can bias the measurement of
AFT and SI, as well as our defined deadline TDT and TDI.
To investigate on this, we consider the apps startup, and
run 10 experiments for each app with and without Android
screenrecord enabled. For each experiment we collect two
metrics: TDT over the app startup activity window, and the
Displayed time6 provided by Android Activity Manager7

via logcat for those activities involved in the app startup
(e.g., launching the process, initializing the objects, creating
the activity, inflating the layout, and drawing the application
for the first time). In other words, we are interested in un-
derstanding if (and by how much) these deadline changes in

6https://developer.android.com/topic/performance/vitals/launch-time
7https://developer.android.com/reference/android/app/ActivityManager

8

https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/reference/android/app/ActivityManager

Figure 11: YouTube startup waterfall.

the presence of the screen record with respect to the bytes
exchanged, as well as the dynamics of the apps. In Fig 10 we
compare the median TDT (left) and Displayed times (right)
across apps and experiments. Notice how the points are well
distributed over the bisect line, with only two corner cases
for the Display time (Uber and Whatsapp). With an error
generally lower than 1%, we can conclude that for the apps
under study the impact of the screen record is marginal.
Summary. The analysis shows that metrics purely based on
passive traffic monitoring are a reasonable approximation of
AFT and SI, and at least as good as popular metrics such as
PLT. This brings visibility on apps dynamics when AFT and
SI cannot be measured, and more broadly they can signifi-
cantly simplify QoE/performance analysis. There are clearly
some corner cases and occasional outliers, as not all apps
behave the same, but our analysis shows that TDT and TDI
are reasonable heuristics to qualitatively capture delivery
deadlines.

7 CRITICAL PATH ANALYSIS
CPA tools for browsing define the critical path based on a
dependency graph capturing the relations between objects
downloaded (§2.2). This graph is constructed “passively” ex-
ploiting the DOM built by the browser when rendering the
webpage; however this technique is not applicable to generic
mobile apps. Therefore, to discover critical traffic, MCPA
uses an “active” approach based on traffic throttling. We use
the tc utility to throttle one domain at a time to 1kb/s, and
test the impact on the activity window delivery deadline. In
particular, for each throttling scenario we perform 10 runs
applying a p-value test (with 0.05 as significance level) to
accept or reject the null hypothesis: a domain is critical if the

Figure 12: Youtube app-click traffic flows. The red ar-
row denotes possible prefetching of the advertisement
video.

Figure 13: CNN startup waterfall.

deadline is always delayed across runs. Likewise, a similar
test is applied to discover dependencies among domains (i.e.,
by delaying domain A also domain B is delayed).
Overall, we define Critical Set (CS) as the set of domains

impacting the delivery deadline, and we use it to create a de-
pendency graph among domains.We defineCritical Path (CP)
as the whole set of flows generated by the CS. In other words,
similarly to Lighthouse, MCPA CP is defined based only on
network traffic, but it captures the whole traffic activities
of a flow, rather than pinpointing specific objects/requests.
It follows that the time on CP is the sum of time intervals
where at least 1 critical flow is active. In the remainder of the

9

Figure 14: Twitter startup waterfall.

section, we first present some examples of CPA on specific
apps. Then, we discuss traffic properties across apps.

7.1 Dissecting individual apps traffic
Fig. 11, Fig. 13, and Fig. 14 details the startup traffic dynamics
for YouTube, CNN, and Twitter apps respectively by stacking
6 views of the traffic: dependency graph, download waterfall,
time on CP, CDF of the bytes exchanged, and a film strip
showing the screen rendering progress. The dependency
graphs show only domains having at least one dependency.
In the downloadwaterfall each row corresponds to a different
flow (labeled with domain and destination port). Horizon-
tal lines show bursts carried by flows (§6), colored red if
found critical (blue otherwise), while dotted lines indicate
idle periods. Saturated colors reflect exchange of data, while
pale ones correspond to DNS and handshakes (TCP, TLS, or
QUIC). Finally, two vertical lines mark the AFT and TDT
deadlines.
YouTube. Focusing on YouTube, the traffic before the AFT is
almost entirely critical. This is composed of a mix of images
(i.ytimg.com handles video thumbnails, while yt3.ggpht.com
handles user related content such as avatars), control, and
other structural elements of the app (e.g., fonts, javascripts).
The download idle times hint to rendering cycles (fetch
→ process → render → iterate), as also confirmed by the
film strip showing a “dummy” loading screen used to hide
the actual rendering process. TDT is delayed due to video
pre-fetching. This is confirmed by app-click, where we ob-
serve the portion of video left being delivered on the al-
ready opened flows when the playback is triggered. An
example is shown in Fig. 12. After 4 requests to redirec-
tor.google.com, three flows are opened towards video caches

(r5—sn-aigzrn7l.googlevideo.com, r3—sn-aigzrn7l.googlevideo.com,
and r2—sn-aigl6nek.googlevideo.com). At around 28s and 30s,
the trending videos tab and the subscriptions tab are opened,
respectively. Finally, at 47s the video playback is triggered.
Notice however how a “blob” of content is carried through
the connection opened earlier and correspond to a video ad,
while the actual video is downloaded from a different video
cache (r2—sn-aigl6ney.googlevideo.com).
CNN. Differently from YouTube, the majority of the traf-
fic for the CNN app is not critical. After contacting cere-
bro.api.cnn.io (possibly a control domain), there are about 3s
busy with only 3rd party and ads services communications,
none of which is critical. Finally the control goes back to
cerebro.api.cnn.io which triggers the rest of the critical traf-
fic (dynaimage.cdn.turner.com). As for YouTube, rendering
phases are possibly hidden by the loading screen, but more
interesting is the macroscopic impact of 3rd party traffic
which accounts for 55% of the overall deadline.
Twitter. The Twitter app instead has a very simple waterfall:
only 3 flows, all twitter related, with only 1 being critical.
We interpret this minimalist approach as an explicit design
choice, but it would be interesting to know if applying con-
tent sharding and a few more flows could further reduce
loading latency.

7.2 Critical traffic properties across apps
Table 1 summarizes the critical traffic properties for both
app-startup (left) and app-click (right). For each app we re-
port the number of critical flows, domains, bytes both in
absolute and percentage averaged across different runs. We
also report the time spent on the critical path (TC) and how
this is spent doing DNS, transport handshakes, and data
transfers. Table rows are grouped by app categories.
Traffic volume.On average, 56% (48%) of flows, 89% (79%) of
bytes are critical in app-startup (app-click). Differently from
whatwe expected, in absolute scale the volume of bytes is still
significant in app-click (351kB on average, almost 70% of the
average volume in app-startup). Considering domains, 38%
are critical in app-startup startup against 56% for app-click.
There are macroscopic differences between apps, but no
visible patterns within and between categories or scenarios.
For instance, Whatsapp is an “outlier” as all traffic is carried
over 1-2 flows, hence everything is critical. The only class
that seems different is web browsing, which presents 48%
(71%) of critical flows (bytes), -8% (-18%) with respect to apps
startup.
Time on CP. For browsing also TC is lower, 38% against
63% (55%) in app-startup (app-click). On the other hand,
for both browsing and apps TC is similar in absolute scale
(4-5s). In other words, despite the diversity in the actions
triggered, results suggest that the differences in the critical

10

Table 1: Critical path traffic characteristics.

App-startup
fl. dom. vol.[kB] TC[s] TC break [%]

abs %abs % abs % abs %dnshshakedata
Twitter 5 38 1 13 33 79 4 77 0 32 68

Facebook 2 40 2 40 836 97 9 61 1 6.3 92.7
Instagram 9 56 2 251108 97 4 80 0 11.6 88.4
Whatsapp 2100 1100 4100 1100 9 6 85
Snapchat 8 80 4 502802 91 11 70 3 23 74

Messenger 4 57 3 50 86 72 2 63 0 31.8 68.2
CNN 10 59 2 13 25 31 3 38 15 19.6 64.4
BBC 6 75 2 50 98 96 1 21 0 29 71

NewsBreak 27 66 5 25 152 92 5 63 0 20 80
Gmaps 17 65 6 46 870 99 4 57 0 37 63
Uber 13 59 6 43 238 95 13 53 0 25 75
Letgo 10 56 3 30 715 97 1 18 6 31 63

Amazon 33 67 5 451490 96 7 84 0.4 30.6 69
Gmail 1 14 1 20 16 91 2 82 0 46.5 53.5

Outlook 4 57 2 50 20 91 2 79 3 32 65
Youtube 10 63 4 36 127 84 3 46 5.8 25 69.2

SoundCloud 10 43 2 20 715 99 8 76 0 84 78
Spotify 1 13 2 25 78 95 5 59 1 15 84

AVERAGE 10 56 3 38 523 89 5 63 2.5 24.8 72.7
Browsing 12 48 5 37 488 715.53 38 2.6 21.5 76

App-click
fl. dom. vol.[kB] TC[s] TC break [%]

abs %abs % abs %abs %dnshshakedata
1 13 1 25 29 96 19 44 0 0 100
3 60 2 401313 63 5 54 6 10 84
4 57 1 501538 90 2 50 0 0 100
1100 1100 1100 1100 0 0 100
2 22 1 33 194 75 6 17 2 7 91
2 40 2 67 20 79 10 35 0 2 98
3 25 2 40 69 82 1 55 0 3 97
4 36 2 67 105 92 1 67 0 22 78
19 43 7 78 96 20 3 73 0 13 87
3 60 2100 870 98 2 52 0 0 100
3 43 1 50 13 11 5 85 0 0 100
5100 2100 65100 2100 0 6 94
21 34 4 361650 92 12 80 0 6 94
6 55 2 40 38 75 11 21 0 7 93
5 83 3 75 9100 0 35 0 75 25
5 45 1 20 65 47 1 31 0 67 35
1 17 1 33 120 99 1 44 0 0 100
3 30 1 50 115 98 0 52 0 0 100
5 48 2 56 351 79 4 55 0 12 88

traffic between startup and actual app usage could be less
pronounced that one might think. As expected, data transfer
has the largest impact on the critical path with 72.7% (88%)
for app-startup (app-click). DNS is generally small except for
a few cases. Conversely, protocol handshakes are heavier at
startup (24.8% on average), but app-click shows unexpected
bi-modal behaviour with either a heavy (e.g., 67% YouTube,
10% Facebook) or negligible weight.
Content type analysis. Extracting keywords from the do-
mains, we split the traffic in 3 classes: ad-hoc (apps/websites
specific domains), cdn, and oth-serv (e.g., 3rd party services,
ad networks). We find that for apps (browsing) TC is split
into 68% (33%), 25% (51%), and 7% (15%), while volume is split
into 47% (25%), 52% (65%), and 1% (9%) for ad-hoc, cdn, and
oth-serv respectively. In other words, apps network latency
tends to gravitate towards app-specific domains. Those are
not necessarily responsible only for control logic as they
carry almost the same volume as CDNs. Conversely, brows-
ing content is likely served by CDNs. Considering oth-serv,
browsing spends 2× TC than apps, but downloads 9× more
volume than apps.

0.00 0.25 0.50 0.75 1.00
Fraction of time on CP

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MCPA
WProfX
Lighthouse

Figure 15: Comparing network time on CP across CPA
tools.

8 DISCUSSION
MCPA aims to identify critical traffic generated by generic
mobile apps. A few other CPA tools for mobile apps have
been presented, but none of them are applicable to our intent
as they either require heavy on-device instrumentation or

11

�
�
�
�
�
�
�
�
�
��
��

� � � � � � � � � �� ����
���
��
��
��

��
��

��
�
��

�������� ������� � ����������
�

Figure 16: Comparing MCPA and Lighthouse: number
of critical domains.

Figure 17: Lighthouse critical path analysis.

do not dissect traffic dynamics [31, 41]. However, restrict-
ing the focus to web browsing only, we can compare MCPA
with WProfX (the WProf version for mobile browsing) and
Google Lighthouse, both open sourced. Fig. 15 shows the
CDF of the fraction of time on CP for the three tools. We
highlight that for MCPA and Lighthouse, time on CP implic-
itly refers to only network activities, while WProfX reports

also on parsing and rendering time, which we exclude for
the comparison.
WProfX profiles the impact of webpages loading activities
on PLT. Notice the strong similarity ofMCPA and WProfX
CDFs, with both tools reporting 38% of time onCP on average.
This implies thatMCPA, even if based on traffic analysis only,
is comparable with an in-browser profiling engine.
Lighthouse reports the webpage Critical Request Chains
(CRCs) pinpointing to objects generating bottlenecks.8 As
visible in Fig. 15, Lighthouse reports a shorter time on CP
than both WProfX and MCPA. We found that MCPA gener-
ally classifies a few more domains as critical than Lighthouse
(Fig. 16), but the same is true for WProfX too. The reason of
the discrepancy resulted clear only by investigating Light-
house source code, i.e., it is due to an internal design choice
not publicly documented. Specifically, Lighthouse marks ob-
jects as critical if they have a network priority higher than
medium (i.e., the browser schedules objects fetch early on),
and they are neither images, XML HTTP Request (XHR), nor
server push(ed) content. This results in a “constrained” view
of the traffic as reported for a subset of websites by the strip-
plots in Fig. 17: grey dots represent all requests; red dots (left
plot) mark critical objects; blue dots (right plot) marks prior-
itized objects; vertical black lines mark the AFT. Notice how
Lighthouse is biased towards the first part of the download,
which possibly involves only “structural” properties of the
webpage rather than actual content.

Beside the fine-grained details, the tools comparison high-
lights a more subtle problem: the lack of standard method-
ologies to pinpoint what is critical, and how to perform root
cause analysis related to those bottlenecks. These goals go
beyond the purpose of our work, which instead addresses a
prior and more fundamental requirement: to ease the study
of generic mobile apps. We demonstrated that network mea-
surements can be effective and easier to adopt than rendering
based metrics such as AFT/SI. Moreover, our definition of
critical path aims to discover any critical network activity
without any restriction on the type, so to capture traffic dy-
namics as a whole. To testMCPA we adopted the standard
practice of an instrumented device, with the intention to
demonstrate that this might not be necessary. This can open
the doors to a new class of tools easier to deploy than current
state of the art techniques, without significantly sacrificing
accuracy. In this way, app developers and mobile operators
could better dissect traffic dynamics (e.g., TCP/TLS hand-
shake, TCP fast open [30], app-specific protocols, control
logic, or pre-fetching) by means of at-scale measurement
campaigns.

8https://developers.google.com/web/tools/lighthouse/audits/critical-request-chains

12

https://developers.google.com/web/tools/lighthouse/audits/critical-request-chains

Table 2: App usage patterns.

app name package name usage pattern
Twitter com.twitter.android start app; open trending now; select top result; select top tweet; refresh

home.
Facebook com.facebook.katana start app; move to notifications; select top notification; move back to home;

refresh home.
Instagram com.instagram.android start app; open search tab; move back to home (refresh); open story from

top bar.
Whatsapp com.whatsapp start app; select top conversation; type random message and send (x3).
Snapchat com.snapchat.android start app; select friend from list; grab and send picture (x3).

Messenger com.facebook.orca critical start app; open top conversation; type random message and send (x3).
CNN com.cnn.mobile.android.phone start app; open top news; open next news; move back to homepage; open

CNN video portal
BBC bbc.mobile.news.uk start app; open top news; move to popular news list; move back to home-

page; open My News area.
NewsBreak com.particlenews.newsbreak start app; move to news category (e.g., World, Business); open top result;

move to next category; open top result.
Gmaps com.google.android.apps.maps start app; open tab explore restaurants; select top result; tap on indications;

show route info.
Uber com.ubercab start app; open search box; select destination from history; cancel; back to

homepage.
Letgo com.abtnprojects.ambatana start app; open random item category (e.g., tech); open top offer; tap on

more info to display item details (including geographical location); move to
different category.

Amazon com.amazon.mShop.android.shopping start app; open side menu; select top offers; select top item; open item
details page.

Gmail com.google.android.gm start app; open random email from inbox; open reply tab; send empty reply;
move back to inbox.

Outlook com.microsoft.office.outlook start app; open random email from inbox; open reply tab; send empty reply;
move back to inbox.

Youtube com.google.android.youtube start app; move to trending tab; move to subscriptions tab; select top result
(playback starts); exit playback.

SoundCloud com.soundcloud.android start app; open liked tracks tab; open top song; start song playback; exit
playback.

Spotify com.spotify.music start app; move to your playlists; open top playlist; start playback; stop
playback (and move back to home).

REFERENCES
[1] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan,

Ben Greenstein, Shane McDaniel, Michael Piatek, Colin Scott, Matt
Welsh, and Bolian Yin. 2015. Flywheel: Google’s Data Compression
Proxy for the Mobile Web. In Proc. USENIX NSDI.

[2] Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang, Shobha Venkatara-
man, and He Yan. 2014. Prometheus: Toward Quality-of-experience
Estimation for Mobile Apps from Passive Network Measurements. In
Proc. ACM HotMobile.

[3] Mario Almeida, Muhammad Bilal, Alessandro Finamore, Ilias Leon-
tiadis, Yan Grunenberger, Matteo Varvello, and Jeremy Blackburn. 2018.
CHIMP: Crowdsourcing Human Inputs for Mobile Phones. In Proc.
WWW.

[4] Mario Almeida, Alessandro Finamore, Diego Perino, Narseo Vallina-
Rodriguez, and Matteo Varvello. 2017. Dissecting DNS Stakeholders
in Mobile Networks. In Proc. ACM CoNEXT.

[5] Flurry Analytics Blog. 2017. U.S. Consumers Time-Spent on Mo-
bile Crosses 5 Hours a Day. http://flurrymobile.tumblr.com/post/
157921590345/us-consumers-time-spent-on-mobile-crosses-5.

[6] Enrico Bocchi, Luca De Cicco, and Dario Rossi. 2016. Measuring the
Quality of Experience of Web Users. In Proc. SIGCOMM Internet-QoE.

[7] Jake Brutlag, Zoe Abrams, and Pat Meenan. 2011. Above
the fold time: Measuring web page performance visu-
ally. https://conferences.oreilly.com/velocity/velocity-
mar2011/public/schedule/detail/18692.

[8] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha,
and Vyas Sekar. 2015. KLOTSKI: Reprioritizing Web Content to Im-
prove User Experience on Mobile Devices. In Proc. USENIX NSDI.

[9] Qi Alfred Chen, Haokun Luo, Sanae Rosen, Z. Morley Mao, Karthik
Iyer, Jie Hui, Kranthi Sontineni, and Kevin Lau. 2014. QoE Doctor:
Diagnosing Mobile App QoE with Automated UI Control and Cross-
layer Analysis. In Proc. ACM IMC.

[10] David Collins. 2017. Mobile conversion rates lag behind desktop.
https://grafik.agency/insight/mobile-conversion-rates/.

[11] Susanne Colwyn. 2014. 89% of consumer media time in mo-
bile apps, 11% in mobile web according to latest statistics by
Nielsen. https://www.smartinsights.com/marketplace-analysis/
customer-analysis/consumer-media-device-use/.

[12] D. N. da Hora, A. Alemnew, C. Vassilis, R. Teixeira, and D. Rossi. 2018.
Narrowing the Gap Between QoS Metrics and Web QoE Using Above-
the-fold Metrics. In Proc. PAM.

13

http://flurrymobile.tumblr.com/post/157921590345/us-consumers-time-spent-on-mobile-crosses-5
http://flurrymobile.tumblr.com/post/157921590345/us-consumers-time-spent-on-mobile-crosses-5
https://grafik.agency/insight/mobile-conversion-rates/
https://www.smartinsights.com/marketplace-analysis/customer-analysis/consumer-media-device-use/
https://www.smartinsights.com/marketplace-analysis/customer-analysis/consumer-media-device-use/

Table 3: Critical domains.

name package name app-click app-startup

Twitter com.twitter.android api.twitter.com api.twitter.com
Facebook com.facebook.katana graph.facebook.com

external-lht6-1.xx.fbcdn.net
graph.facebook.com
scontent-lhr3-1.xx.fbcdn.net
external-lhr3-1.xx.fbcdn.net

Instagram com.instagram.android scontent-lht6-1.cdninstagram.com scontent-lhr3-1.cdninstagram.com
i.instagram.com

Whatsapp
Snapchat com.snapchat.android mvm.snapchat.com app.snapchat.com

app-analytics.snapchat.com
mvm.snapchat.com
sc-analytics.appspot.com

Messenger com.facebook.orca critical edge-mqtt.facebook.com
lookaside.facebook.com

b-graph.facebook.com
scontent.xx.fbcdn.net

CNN com.cnn.mobile.android.phone cerebro.api.cnn.io
dynaimage.cdn.turner.com

cerebro.api.cnn.io
dynaimage.cdn.turner.com

BBC bbc.mobile.news.uk trevor-producer-cdn.api.bbci.co.uk
ichef.bbci.co.uk

trevor-producer-cdn.api.bbci.co.uk
ichef.bbci.co.uk

NewsBreak com.particlenews.newsbreak graph.facebook.com
googleads.g.doubleclick.net
lh3.googleusercontent.com
api.particlenews.com
api.mobula.sdk.duapps.com
img.particlenews.com
log.particlenews.com

graph.facebook.com
googleads.g.doubleclick.net
static.xx.fbcdn.net
tpc.googlesyndication.com
scontent.xx.fbcdn.net

Gmaps com.google.android.apps.maps clients4.google.com
www.google.com

www.google.com
lh4.googleusercontent.com
lh3.googleusercontent.com
lh5.googleusercontent.com
lh6.googleusercontent.com
clients4.google.com

Uber com.ubercab cn-sjc1.uber.com csi.gstatic.com
d1w2poirtb3as9.cloudfront.net
api.braintreegateway.com
cn-sjc1.uber.com
cn-geo1.uber.com
clients4.google.com

Letgo com.abtnprojects.ambatana search-products.letgo.com
img.letgo.com

stickers.letgo.com
search-products.letgo.com
img.letgo.com

Amazon com.amazon.mShop.android.shopping m.media-amazon.com
www.amazon.es
images-eu.ssl-images-amazon.com
images-na.ssl-images-amazon.com

m.media-amazon.com
msh.amazon.co.uk
images-eu.ssl-images-amazon.com
images-na.ssl-images-amazon.com
www.amazon.es

Gmail com.google.android.gm ci5.googleusercontent.com
inbox.google.com

inbox.google.com

Outlook com.microsoft.office.outlook prod15-api.acompli.net
prod15-files.acompli.net
mobile.pipe.aria.microsoft.com

prod15-api.acompli.net
prod15-files.acompli.net

Youtube com.google.android.youtube s.ytimg.com i.ytimg.com
www.youtube.com
youtubei.googleapis.com
yt3.ggpht.com

SoundCloud com.soundcloud.android i1.sndcdn.com api-mobile.soundcloud.com
i1.sndcdn.com

Spotify com.spotify.music i.scdn.co i.scdn.co
pl.scdn.co

14

[13] Kit Eaton. 2015. How one second could cost $1.6 billion in
sales. https://www.fastcompany.com/1825005/how-one-second-could-
cost-amazon-16-billion-sales.

[14] J. Erman, V. Gopalakrishnan, R. Jana, and K. Ramakrishnan. 2013.
Towards a SPDYier Mobile Web?. In Proc. ACM CoNEXT.

[15] Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth
Kandula, and Deborah Estrin. 2010. A first look at traffic on smart-
phones. In Proceedings of the ACM IMC.

[16] Qingzhu Gao, Prasenjit Dey, and Parvez Ahammad. 2017. Perceived
Performance of Top Retail Webpages In the Wild: Insights from
Large-scale Crowdsourcing of Above-the-Fold QoE. In Proc. SIGCOMM
Internet-QOE.

[17] Utkarsh Goel, Moritz Steiner, Mike P.Wittie, Martin Flack, and Stephen
Ludin. 2016. Detecting Cellular Middleboxes Using Passive Measure-
ment Techniques. In Proc. PAM.

[18] Google. 2008. Speed Index. https://sites.google.com/a/webpagetest.org/docs/using-
webpagetest/metrics/speed-index.

[19] Google. 2017. Lighthouse. https://developers.google.com/web/tools/lighthouse/.
[20] Bo Han, Feng Qian, Shuai Hao, and Lusheng Ji. 2015. An Anatomy of

Mobile Web Performance over Multipath TCP. In Proc. ACM CoNEXT.
[21] Bo Han, Feng Qian, and Lusheng Ji. [n. d.]. When Should We Surf the

Mobile Web Using Both Wifi and Cellular?. In Proc. Workshop on All
Things Cellular (ATC ’16).

[22] Tobias HoÃ§feld, Florian Metzger, and Dario Rossi. 2018. Speed Index:
Relating the Industrial Standard for User Perceived Web Performance
to Web QoE. In QoMEX.

[23] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R. Das.
2017. Improving User Perceived Page Load Time Using Gaze. In Proc.
USENIX NSDI.

[24] Anh Le, Janus Varmarken, Simon Langhoff, Anastasia Shuba, Minas
Gjoka, and Athina Markopolou. 2015. AntMonitor: A System for
Monitoring from Mobile Devices. In ACM C2B1D.

[25] Zhichun Li, Ming Zhang, Zhaosheng Zhu, Yan Chen, Albert Green-
berg, and Yi-Min Wang. 2010. WebProphet: Automating Performance
Prediction for Web Services. In Proc. USENIX NSDI.

[26] Yun Ma, Xuanzhe Liu, Shuhui Zhang, Ruirui Xiang, Yunxin Liu, and
Tao Xie. 2015. Measurement and Analysis of Mobile Web Cache Per-
formance. In Proc. WWW.

[27] Monetate. 2018. Benchmarks and Research - EQ1. https:
//info.monetate.com/rs/092-TQN-434/images/EQ1-2018_
First-Impressions.pdf.

[28] D. Naboulsi, M. Fiore, Stephane R., and Razvan S. 2015. Large-Scale
Mobile Traffic Analysis: A Survey. IEEE Communications Surveys &
Tutorials 18, 1 (Oct. 2015), 124–161.

[29] Feng Qian, Subhabrata Sen, and Oliver Spatscheck. 2014. Characteriz-
ing Resource Usage for Mobile Web Browsing. In Proc. ACM MobiSys.

[30] Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain,
and Barath Raghavan. 2011. TCP Fast Open. In Proc. ACM CoNEXT.

[31] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan,
Ian Obermiller, and Shahin Shayandeh. 2012. AppInsight: Mobile App
Performance Monitoring in the Wild. In Proc. OSDI.

[32] John P. Rula and Fabian E. Bustamante. 2014. Behind the Curtain:
Cellular DNS and Content Replica Selection. In Proc. ACM IMC.

[33] Sandvine. 2018. Global Internet Phenomena.
https://www.sandvine.com/press-releases/sandvine-releases-
2018-global-internet-phenomena-report.

[34] Tim Stöber, Mario Frank, Jens Schmitt, and IvanMartinovic. 2013. Who
Do You Sync You Are?: Smartphone Fingerprinting via Application
Behaviour. In Proc. ACM WiSec.

[35] Matteo Varvello, Jeremy Blackburn, David Naylor, and Konstantina
Papagiannaki. 2016. EYEORG: A Platform For Crowdsourcing Web
Quality Of Experience Measurements. In CONEXT.

[36] W3C. 2012. Navigation Timing. https://www.w3.org/TR/
navigation-timing/.

[37] W3C. 2018. Navigation Timing Level 2. https://w3c.github.io/
navigation-timing/#introduction.

[38] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,
and David Wetherall. 2013. Demystifying Page Load Performance with
WProf. In Proc. USENIX NSDI.

[39] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016.
Speeding Up Web Page Loads with Shandian. In Proc. USENIX NSDI.

[40] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016.
Speeding Up Web Page Loads with Shandian. In Proc. USENIX NSDI.

[41] Lide Zhang, David R. Bild, Robert P. Dick, Z. Morley Mao, and Peter
Dinda. 2013. Panappticon: Event-based Tracing to Measure Mobile
Application and Platform Performance. In Proc. CODES+ISSS.

15

https://info.monetate.com/rs/092-TQN-434/images/EQ1-2018_First-Impressions.pdf
https://info.monetate.com/rs/092-TQN-434/images/EQ1-2018_First-Impressions.pdf
https://info.monetate.com/rs/092-TQN-434/images/EQ1-2018_First-Impressions.pdf
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://w3c.github.io/navigation-timing/#introduction
https://w3c.github.io/navigation-timing/#introduction

	Abstract
	1 Introduction
	2 Related Work and MCPA challenges
	2.1 Performance metrics and delivery deadlines
	2.2 Critical Path Analysis - CPA

	3 MCPA Overview
	4 Dataset
	5 Activity Windows
	5.1 Partitioning policies.
	5.2 Validation and sensitivity analysis

	6 Network Waterfall and Metrics
	6.1 Evaluation

	7 Critical Path Analysis
	7.1 Dissecting individual apps traffic
	7.2 Critical traffic properties across apps

	8 Discussion
	References

