
Accelerating Deep Learning Classification with
Error-controlled Approximate-key Caching

Alessandro Finamore, James Roberts, Massimo Gallo, Dario Rossi
HUAWEI Technologies, France

Abstract—While Deep Learning (DL) technologies are a
promising tool to solve networking problems that map to classi-
fication tasks, their computational complexity is still too high
with respect to real-time traffic measurements requirements.
To reduce the DL inference cost, we propose a novel caching
paradigm, that we named approximate-key caching, which returns
approximate results for lookups of selected input based on cached
DL inference results. While approximate cache hits alleviate DL
inference workload and increase the system throughput, they
however introduce an approximation error. As such, we couple
approximate-key caching with an error-correction principled
algorithm, that we named auto-refresh. We analytically model our
caching system performance for classic LRU and ideal caches, we
perform a trace-driven evaluation of the expected performance,
and we compare the benefits of our proposed approach with
the state-of-the-art similarity caching – testifying the practical
interest of our proposal.

I. INTRODUCTION

Edge Artificial Intelligence (AI) is a promising technology
for distributing intelligence at all levels of the network, and
is instrumental to the advent of self-driving networks [1].
However, the computational cost associated with AI models
is high, and impedes their adoption in applications requiring
fast analytics. To mitigate this issue, common options include
simplifying the architecture of the model (e.g., techniques such
as quantization and knowledge distillation reduce model size,
at the cost of lower accuracy [2]–[4]) and accelerating com-
putation (e.g., in addition to adopt hardware accelerators [5],
[6], techniques such as early exit and LCNN allow to bypass
the computation of certain model layers [7], [8]).

Generally speaking, the key to alleviate DL computational
load is to reduce resource wastage due to repeated operations.
In other words, since DL models operate on inputs that are the
same as a previous input (e.g., due to skew in the input pop-
ularity), it may be beneficial to avoid repeating computations
by caching the DL models output corresponding to recurring
inputs. For example, Twitter observed that “an increasing
number of cache clusters are devoted to caching computation
related data, such as features, intermediate and final results of
Machine Learning (ML) prediction [which accounts for] 50%
of all Twemcache clusters” [9], while Microsoft stated that
“machine learning algorithms occupy hundreds of machines
for tens of milliseconds to select the ads for each query.” [10]
– caching is key for DL-based real-time system performance.

While exact caching is already popular for DL inference
systems [11]–[13], we argue that a more flexible paradigm is
required: for similar inputs, it may be advantageous to use
cached DL model results as approximate DL results. This

further reduces the DL inference workload at the cost of an ap-
proximation error. Providing cached results for approximately
similar queries, i.e., similarity caching, is a commonplace in
content retrieval systems. However, due to the nature of the
queries, previous literature in this area [10], [14]–[22] is not
necessarily suitable for ML/DL classification use cases, which
instead are a commonplace in the networking domain.

In this work, we introduce a novel approximate caching
technique, called approximate-key caching, that improves on
similarity caching. As for similarity caching, approximate-key
caching answers to queries with approximate results. However,
approximate-key caching differs from similarity caching in
two main aspects: (i) it lets the user design an approximation
function that is well-adapted to the use case at hand, bringing
improved control over the realized hit rate, and (ii) it intro-
duces a verification of the key-value pairs stored in the cache
using a mechanism we call auto-refresh that explicitly controls
approximation errors. Our contributions are as follows,
• We introduce approximate-key caching, a new caching

paradigm retaining the simplicity of an exact matching
lookup while significantly increasing the hit rate.

• We design an auto-refresh mechanism to automatically
trade-off between exploitation (to reduce DL inference
workload) and exploration (to verify cached results for
error-control).

• We analytically model the error of approximate-key
caching, with and without error correction, for LRU re-
placement (numerical) and an ideal cache (closed-form).

• We present a thorough trace-driven evaluation of
approximate-key caching, including a comparison with
state-of-the-art similarity caching.

In the remainder of this paper, we first provide the necessary
background on classification and caching (Sec.II). We then
introduce approximate-key caching, detailing the auto-refresh
error-control mechanism (Sec.III) for which we provide an
analytical model (Sec.IV). We next perform a trace-driven
evaluation using a real dataset from a traffic classification use
case, demonstrating the soundness of the proposed mechanism,
and illustrating the benefits it offers compared to both exact
caching and similarity caching (Sec.V). Finally, we place
our work in the context of related literature (Sec.VI) and
summarize our findings (Sec.VII).

II. CLASSIFICATION AND CACHING

We start by formalizing the notion of classification tasks
and discussing the use of caching to reduce the compute

ar
X

iv
:2

11
2.

06
67

1v
1

 [
cs

.N
I]

 1
3

D
ec

 2
02

1

input
space

output
space

True mapping

A ={a,b,c}

B ={d}

A={1,2}
B={2}

Exact caching

cache
keys

'

Similarity caching Approximate-key
 caching

a b c d

1 2

a b c d

a b d

1 2
pair-wise distance

a c
d

a b c d

b

1 2

(a) (b) (c) (d)

APPROX()

1 2

APPROX()

A B

a b c d

APPROX()
CLASS() CLASS()

Fig. 1. Synoptic of Exact, Similarity, and Approximate-key caching schemes.

load. Then, we introduce exact caching and similarity caching,
we identify their limitations for classification tasks, and we
motivate the need for a novel alternative mechanism.

A. Classification tasks

We focus on scenarios where an input from an infinite
stream needs to be mapped to a class in real-time. The set
of possible classes C is relatively small (e.g., a few hundred),
while the input is a vector x (of discrete or continuous-valued
elements) from a very large space X . Such a classification
task realizes the deterministic mapping y = CLASS(x) from
an input x ∈ X to a class y ∈ C as depicted in Fig. 1-(a).

Typical CLASS(·) functions are both memory hungry and
computationally intensive. For instance, DL traffic classifica-
tion models [23] require 300k-6M weights, while the inference
duration of smaller state-of-the-art architectures optimized for
real-time is of the order of 150 to 250ms [2]. Thus, for DL-
based network traffic processing, reducing the computational
complexity is key to meet peak demand. Rather than reducing
complexity by simplifying the CLASS(·) function (sacrificing
classification accuracy), in this paper we explore the orthogo-
nal and general approach of avoiding redundant computations
with caching.

B. Exact caching

If the input space X is discrete, one can employ exact
caching to store key-value pairs (x, y) while retaining the
deterministic nature of the classification. If an input key x is
stored in the cache, its value y can be returned immediately.
As long as the cache hit rate is sufficiently high [11], [12], we
can significantly reduce the average response time (e.g., sub-
microsecond for a DRAM access vs hundreds of milliseconds
for a DL inference) and save computational resources for
processing less popular input keys. We exemplify this in
Fig. 1-(b) where the cached {(a, 1), (b, 1), (d, 2)} pairs avoid
invoking CLASS(·) for {a, b, d}.

Exact caching is simple to implement, and the widely used
Least Recently Used (LRU) replacement policy is known to
offer good performance in practice: if an input x is not in the
cache, its value y = CLASS(x) is retrieved and the key-value
pair (x, y) is cached; to make room, the least recently accessed
cached pair is evicted. We are aware that the cache literature is
ripe with alternative policies that can achieve a more favorable
trade-off between hit rate, algorithm complexity, and reactivity
to changes in popularity [24]. Rather than exploring this space,

we consider instead a hypothetical ideal caching policy that,
in a cache of capacity K, caches precisely the K most popular
key-value pairs. As we shall see, this eases the study of
alternative methods to exact caching. Yet, even ideal exact
caching is ineffective for many classification tasks. In fact, the
input space X is commonly too large, and for any reasonable
cache capacity K, the fraction of inputs that match a cache
entry is too small to offer a relevant hit rate (Sec.V).

C. Similarity caching

To circumvent the issues of exact caching, many authors
have proposed to answer cache lookups with approximate
results, trading off precision for a higher hit rate. Among a
number of application-specific approaches, the more generic
notion of similarity caching has emerged (also known as
“metric caching” [16], and “nearest neighbor caching” [21]),
notably for applications that use approximate similarity search.

Approximate similarity search [25]–[27] builds on the no-
tion that if two points x1 and x2 are sufficiently close to each
other, also y1 and y2 will be close. The principle is to respond
to an input query x1 with a cached value y2 where the key x2
associated with y2 is similar but not necessarily identical to x1,
i.e., when a metric DIST(x1, x2) is less than a given distance
threshold ε. The appropriate definition of DIST(x1, x2) and the
choice of threshold ε clearly depend on the particular use case,
and both contribute to trade off between cache hit rate and
response accuracy. This commonly results in implementing a
k Nearest Neighbor (kNN) strategy. For instance, in Fig. 1-(c)
the closest cached input to c is b, which generates an error by
returning 1 rather than 2; alternatively, by setting a very small
ε, a lookup for b would generate a cache miss.

While similarity caching is an appealing concept, it presents
downsides. First, similarity caching assumes that the closeness
of two inputs also implies that their respective output values
are close – otherwise stated, it assumes that objects in the
neighborhood of a cached input offer a low approximation
error for a variety of other inputs. As such, similarity caching
is particularly useful for searching, i.e., when the value
associated with a key is not unique but rather a set of
possibilities. Mapping this scenario to a classification task
requires ingenuity, however, as it is not obvious how to define
an appropriate similarity distance, or how to tune the threshold
ε to balance hit rate against accuracy.

Second, the lookup function performed in similarity caching
is much more complex than an exact-match lookup: finding
one or more nearest neighbors to an input x may be particu-
larly time-consuming when the input space X is large, even
with state-of-the-art algorithms such as ball trees, k-d trees,
and Locality Sensitive Hashing (LSH) [28].

Third, it is necessary to define a replacement policy for
similarity caching that ensures that the cache is populated
with key-value pairs adequately covering the input space. The
selection of which cached pair is least useful and must be
evicted is significantly more complex (as it triggers an update
of the ball tree, LSH, or other data structure used) than the
LRU policy for exact caching [16], [22].

2

TABLE I
TAXONOMY OF THE CACHE DESIGN SPACE

Caching Key Match Hit rate Cost Err control

exact original exact low low not needed
similarity original approx high high indirect

approx-key approx exact high low direct

Last but not least, whereas similarity caching introduces
classification errors, it does not provide any direct means
to correct them. In fact, if on the one hand the ε distance
threshold controls the similarity between different inputs, no
formal verification of the cached (x, y) pairs is commonly
offered. In other words, errors are only “indirectly” controlled
by LRU eviction mechanisms.

To address the limitations of exact caching and similarity
caching we have devised an alternative form of approximate
caching that we term approximate-key caching.

III. APPROXIMATE-KEY CACHING WITH ERROR CONTROL

We first introduce approximate-key caching (Sec. III-A),
then we explain how the error rate can be controlled with
our proposed auto-refresh algorithm (Sec. III-B). We contrast
approximate-key caching with exact and similarity caching in
Table I and in the toy example in Fig. 1-(d).

A. Approximate-key caching

Essentially, approximate-key caching transforms the input
space (i) to significantly reduce the size of the original input
space X that makes exact caching impractical due to a very
low hit rate, and (ii) to enable the use of exact matching
in the transformed space. The transformation should ideally
increase the keys popularity skew, further increasing the hit
rate. More formally, instead of caching inputs x∈X (as it
happens in similarity caching), we cache approximate inputs
x′ = APPROX(x) ∈ X ′ where |X ′| � |X |.

Fig. 2-(right) illustrates some examples of APPROX(·) func-
tions on an time series input x having six integer elements:
• prefix3 (suffix3) takes the first (last) 3 elements;
• every2 (maxpool2) takes every second element (the max

between two consecutive elements);
• quantize10, rounds elements to the nearest multiple of 10.

Clearly, other APPROX(x) functions can be defined, including
combinations of some of the above. The choice depends
on the precise nature of the considered use case, but those
transformations make caching more flexible with respect to
similarity caching where the cache keys are kept unmodified.

When an approximate-key x′ is cached, it remains to define
the associated value y′. One possible approach is to store
the value inferred by the CLASS(·) function whenever an
approximate-key is inserted into the cache: if x′ = APPROX(x)
is not in the cache, then a classification inference is triggered
and the resulting key-value pair (x′, y′) is cached, where
x′ = APPROX(x) and y′ = CLASS(x). Subsequently, as
long as x′ remains in the cache, every input key that is
approximated by x′ will find the stored value y′ with a simple

104 101 106prefix3
-114 -111 -116suffix3

-116104 106 -111everyn2

100 100 110 -110 -110 -116quantize10

104 101 106 -114 -111 -116input x

104 -114 -116maxpool2
x' = APPROX(x) +y state

Value
CLASS()

Key
x

yverified

auto-refresh

cache entry

approx-key x'

examples of APPROX(x)

Fig. 2. Approximate-key caching system overview.

Algorithm 1: Auto-refresh error correction
Input: cache object, input x, back-off β;
Output: y class;

1 x′ = APPROX(x) # compute approximate-key (fast)
2 (y, state) = cache.lookup(x′) # exact matching (fast)
3 if y is null then # miss: add new entry
4 y = CLASS(x) # inference (slow)
5 state.to_serve = 0
6 state.refreshed = 1
7 cache.add(x′, (y, state))
8 else if state.to_serve > 0 then # hit (no refresh)
9 state.to_serve -= 1

10 else # hit (refresh needed)
11 yverify = CLASS (x) # inference (slow)
12 if yverify == y then # no conflict: increase back-off
13 state.to_serve = floor(pow(β, state.refreshed))
14 state.refreshed += 1
15 else # conflict: reset (y, state)
16 y = yverify
17 state.to_serve = 0
18 state.refreshed = 1
19 cache.update(x′, (y, state))
20 return y

exact match operation. The replacement policy might be any
of those applicable to exact caching, including LRU and the
hypothetical ideal policy discussed in Sec. II-B.

This process is not immune to errors since not all x mapping
to the same x′ share the same class. For instance, in Fig. 1-
(d) the approximate-key A maps to the inputs XA = {a, b, c}
which have different classes CA = {1, 2}; the approximate-key
B instead does not generate mismatches.

Approximate-key caching, as defined above, may be satis-
factory if popular approximate-keys (like B in the illustration)
correctly record the class of all, or a very large fraction of
the inputs mapping to them – i.e., the popular approximate-
keys present a dominant class. However, this can hardly be
guaranteed, so we introduce a direct verification of the (x′, y′)
mappings. The purpose of such a mechanism is to ensure that
the cache preferentially stores key-value pairs that yield no
error (like B, class 1), while cases with mismatches (as X ′A)
require multiple verification with CLASS(·).

B. Error control via auto-refresh

We named our error control algorithm auto-refresh, and
Fig. 2-(left) sketches our overall approximate-key caching
system. Each cache value is composed of the class y and
a state used to track the validity of the mapping (x′, y′).
The mechanism verifies the accuracy of the mapping for
selected inputs, and updates the value if there is a mismatch.
If the verification is successful, the interval before the next

3

verification is increased exponentially. The pseudocode of the
algorithm is presented as Algorithm 1.

When an input x is processed, the algorithm first computes
approximate-key x′, and does a cache lookup (with exact
matching) to obtaining the related value (y, state). If there
is a miss, inference y = CLASS(x) is run, and the pair
(x′, (y, state)) is added to the cache with a reset state (lines
3-7). The counter state.to_serve defines how many lookups
can be served before the next refresh, while state.refreshed
counts the number of refreshes triggered so far.

If x′ is in the cache (hit), two cases are possible. When
no refresh is needed, the state is simply updated (line 8-9).
Otherwise, a verification takes place invoking CLASS(·): if
the current and verified classes are consistent, the number of
lookups that can be served without refresh is exponentially
increased (with base β > 1); if the classes mismatch, yverify
replaces y, and the state is reset (lines 11-19).

Otherwise stated, the algorithm verifies every input after
a new cache update until the number of inputs n, including
the first, exceeds βn−1. This means that the verification is
initially frequent, especially if β is small, and then becomes
exponentially more and more rare as long as repeated matches
confirm the stored class (i.e., the entry has a dominant class).
This intuitively realizes the objective stated at the end of
the previous subsection: the cache avoids costly inference for
approximate-keys with a low probability of error (like B in
Fig. 1-(d)), while approximate-keys with a higher probability
of error (like A in Fig. 1-(d)) are subject to frequent verifica-
tion. In the next section we formally analyze these benefits.

IV. ANALYTICAL MODEL

We first analyze the performance of approximate-key
caching without error control (Sec.IV-A), and then extend the
model to account for the auto-refresh mechanism (Sec.IV-B).

A. Approximate-key caching without error control

To formalize the discussion on errors introduced above we
introduce some notation. First, it is convenient to refer to the
members of X ′ as x′i, for 1 ≤ i ≤ |X ′|. The relative x′i
popularity is denoted qi, i.e., the probability that an arbitrary
input has approximate-key x′i. We have

∑
i qi = 1 and,

without loss of generality, we order the x′i in decreasing
order of popularity such that qi ≤ qj if i < j. We shall
assume the the input stream follows the Independent Reference
Model (IRM), a common assumption in the cache performance
analysis literature, where the probability qi is independent
from the order of x in the input stream.

For LRU caching, the characteristic time approximation
yields the cache hit rate H(LRU) of a cache of capacity K
[29]. We hence have that,

H(LRU) =
∑

1≤i≤|X ′|

qi(1− e−qitc), (1)

where the characteristic time tc solves the equation,∑
i

(1− e−qitc) = K. (2)

The hit rate for inputs with approximate-key x′i is then hi =
1− e−qitc .

An ideal cache permanently stores the K most popular
approximate-keys and therefore realizes a hit rate hi = 1,
for 1 ≤ i ≤ K, and hi = 0, otherwise. The overall hit rate is,

H(ideal) =
∑

1≤i≤K

qi. (3)

For the subset of inputs with approximate-key x′i, the true
class belongs to a set Ci, with members denoted yij for
1 ≤ j ≤ mi with mi = |Ci|. In extension of the IRM, we
assume the class of an arbitrary input in this subset is yij
with probability pij , independently of its position in the input
stream, with

∑
j pij = 1.

Without error control, the class associated with a cached
approximate-key x′i is that of the input that led to the cache
insertion. Under the above independence assumptions, the
probability an incorrect class is returned for this key is,

ei =
∑
j

pij(1− pij) = 1−
∑
j

p2ij . (4)

The overall LRU and ideal caching error rate without correc-
tion is thus,

E(LRU)
nc =

∑
i

qihiei, E(ideal)
nc =

∑
i≤K

qiei. (5)

It is clear from (4) that the error rate ei will be small if
maxj{pij} is close to 1 (i.e., where there is a dominant class
yij mapping to the majority of inputs x having approximate-
key x′i) and rather high when the true class can take several
values with similar, small probabilities (e.g., when all labels
are equally likely pij = 1/mi for all j, then ei = 1− 1/mi).
The auto-refresh algorithm is designed to preferentially rely
on the cached value of dominant labels while resorting to an
actual inference CLASS(·) when maxj{pij} is small.

B. Error control via auto-refresh

We continue the analysis focusing on the effects of the auto-
refresh algorithm. We first consider an LRU cache of capacity
K and derive the fraction ri of inputs with approximate-key
x′i that require DL inference (due to insertion or refresh), and
the corresponding fraction ei of errors due to class mismatch.
We then simplify the model by assuming the cache is ideal,
leading to closed-form results of more intuitive interpretation.

1) LRU replacement: We consider sequences of input ar-
rivals with approximate-key x′i that begin with a new cache
insertion and terminate with the last arrival before either (i)
an LRU eviction, or (ii) an auto-refresh update due to a class
mismatch. We refer to such a sequence as a j-sequence.

It is convenient at this point to formulate the result of
Algorithm 1 as follows. If there is no prior mismatch, the nth

inference of the j-sequence occurs on input φn, counting the
initial identification on input 1 as the first inference (φ1 = 1),
where

φn = max{n, bβn−1c}. (6)

4

For instance, if β = 2, inferences occur on inputs 2n−1 for
n ≥ 1 while if β = 1.5, inferences occur on inputs 1, 2, 3, 5,
7, 11,· · · .

Let Pmm
j (a) be the probability a j-sequence is of length a,

a ≥ 1, and ends due to a mismatch. The sequence ends just
before the nth CLASS(·) inference where φn = a+1 and n ≥
2. It counts a+1 hits (including the mismatch), n−2 matching
CLASS(·) inferences (after the first), and one mismatch (on
arrival φn). By the independence assumptions and applying
the characteristic time approximation, we deduce,

Pmm
j (a) =

{
(1− e−qitc)a+1pn−2ij (1− pij), if a = φn − 1,

0, otherwise.

Let P lru
j (a) be the probability a j-sequence being of length

a and ending due to a cache eviction prior to arrival a + 1.
The sequence then has a cache hits, and is followed by one
cache miss. It contains n − 1 matching CLASS(·) inferences
with φn ≤ a < φn+1. By independence we have therefore,

P lru
j (a) = (1− e−qitc)ae−qitcpn−1ij ,

with n such that φn ≤ a < φn+1.
Now consider the probabilities πj that an arbitrary sequence

is a j-sequence for 1 ≤ j ≤ mi. By stationarity, the πj satisfy
recurrence relations,

πj =
∑
k 6=j

πk
∑
x≥1

Pmm
k (x)pij/(1−pik)+

∑
k≥1

πk
∑
x≥1

P lru
k (x)pij ,

that, with the normalization condition
∑
j≥1 πj = 1, can be

solved numerically.
Overall, the probability an arbitrary sequence is of length

a is,
P (a) =

∑
j

(
Pmm
j (a) + P lru

j (a)
)
πj .

From this distribution we can derive the required performance
measure ri as follows. The number of CLASS(·) inferences
including the first in a sequence of length a is n(a) = n :
φn ≤ a < φn+1. The overall fraction of arrivals that requires
inference is thus,

ri =

∑
a≥1 n(a)P (a)∑
a≥1 aP (a)

. (7)

To compute the fraction of errors ei, consider a j-sequence
of length a. The number of unverified arrivals is a − n(a)
(since there are n(a) CLASS(·) inferences). Each such arrival
independently gives an error with probability 1 − pij so that
the expected number of errors in the sequence of a arrivals is
(1− pij)(a− n(a)). We deduce the overall expected fraction
of errors,

ei =

∑
a

∑
j(1− pij)(a− n(a))πj

(
Pmm
j (a) + P lru

j (a)
)∑

a≥1 aP (a)
.

(8)
The above formulas can be used to evaluate the auto-refresh

algorithm for a traffic model specified by the distributions {qi}
and {pij}. However, the evaluation is necessarily numerical
and the formulas provide little insight into the impact on the

traffic model performance and the refresh parameter β. To gain
further understanding, we now consider the simpler model of
an ideal cache.

2) Ideal cache: An ideal cache contains just the K most
popular items. This can be realized approximately in practice
using more sophisticated replacement policies than simple
LRU, as discussed in [24]. However, we consider it here more
as a useful abstraction that allows us to evaluate the impact of
auto-refresh on the most popular items that are indeed always
in cache with very high probability. In the ideal cache, the
sequences defined above always end because of a mismatch
and the formulas simplify. The CLASS(·) inference fraction
and the error fraction for approximate-key x′i, with i ≤ K,
are given by the following proposition.

Proposition 1. The fraction ri of inputs with approximate-key
x′i that are verified by a CLASS(·) inference is given by

ri =

{
1∑

j

∑
n≥2(φn−1)(1−pij)2pn−1

ij

, if maxj{pij} < 1/β,

0, otherwise.
(9)

The probability ei an input with approximate-key x′i is incor-
rectly classified is

ei =

{ ∑
j

∑
n≥2(φn−n)(1−pij)3pn−1

ij∑
j

∑
n≥2(φn−1)(1−pij)2pn−1

ij

, if maxj{pij} < 1/β,

1−maxj{pij}, otherwise.
(10)

Proof. Let Pj(a) be the probability a sequence is of length
a, a ≥ 1, given that it begins with fresh class yij . By the
independence assumption, we have for n ≥ 2,

Pj(a) =

{
pn−2ij (1− pij), if a = φn − 1,

0, otherwise.

The recurrence relations for the probabilities an arbitrary
sequence begins with the insertion of yij become,

πj =
∑
k 6=j

πk(pij + pikpij + p2ikpij + . . .),

with the normalized solution,

πj =
pij(1− pij)∑
k pik(1− pik)

.

The fraction of sequences that starts with yij and counts
a = φn − 1 arrivals is πjPj(φn − 1) for n ≥ 2. In such a
sequence, the number of inputs for which a CLASS(·) inference
is performed (including the first) is n − 1. We deduce the
overall proportion of inputs that perform a CLASS(·) inference,

ri =

∑
j

∑
n(n− 1)πjPj(φn − 1)∑

j

∑
n(φn − 1)πjPj(φn − 1)

,

provided the series converges. It is easy to see that the
numerator always converges and the denominator converges
when pij < 1/β for all j. If max{pij} ≥ 1/β on the other
hand, the denominator is dominated by terms proportional to
(βmax{pij})n and goes to infinity yielding ri = 0.

5

The number of inputs in the sequence that are not verified
is (φn−n) and each of these brings an error with probability
(1− pij). The overall fraction of errors is thus

ei =

∑
j

∑
n(φn − n)(1− pij)πjPj(φn − 1)∑
j

∑
n(φn − 1)πjPj(φn − 1)

,

provided the series converges, i.e., the case when pij<1/β
for all j. If max{pij}≥1/β, numerator and denominator are
dominated by terms proportional to (βmax{pij})n whose
constant ratio is 1−max{pij} yielding expression (10).

For the K most popular approximate-keys, the fraction of
inputs that requires CLASS(·) inference, namely the refresh
rate, is,

R(ideal) =
∑

1≤i≤K

qiri. (11)

The overall fraction of inputs requiring inference is then
R(ideal) + (1−H(ideal)) where H(ideal) is given by (3). Hence,
when the auto-refresh algorithm is used, the error rate for
cached items is,

E(ideal) =
∑

1≤i≤K

qiei, (12)

and this is the overall fraction of errors due to approximate-
key caching since non-cached approximate-keys are correctly
classified.

C. Impact of error control
Proposition 1 illustrates the desirable behavior of auto-

refresh with error control: approximate-keys with a dominant
class yield few errors and rarely require verification while
approximate-keys with equally likely classes are, on the con-
trary, frequently verified.

1) Dominant class: Formulas (9) and (10) show that,
if an approximate-key x′i has a dominant class such that
max{pij} > 1/β, the fraction of inputs requiring CLASS(·) in-
ference is asymptotically zero while the error rate is bounded.
We have,

ri = 0, ei ≤ 1− 1

β
. (13)

This shows how the choice of back-off rate in the auto-refresh
algorithm trades off accuracy for classification throughput: the
smaller β, the smaller the error, while the number of slower
inferences performed via a CLASS (·) call is greater.

2) No dominant class: The worst scenario for an
approximate-key happens when there are multiple possible
classes with equal probability, i.e., pij = 1/mi. For the
particular case β = 2, the proposition gives,

ri =
mi − 2

mi − 1
, ei =

1

mi
(14)

Clearly, when mi is large, auto-refresh hardly reduces the
inference workload (asymptotically, ri → 1) and it would be
better not to cache this approximate-key at all. On the other
hand, the auto-refresh algorithm is still able to maintain a low
error rate (asymptotically null ei → 0). Such approximate-
keys are frequently verified and yield small errors which is
indeed the desired behavior.

V. TRACE-DRIVEN EVALUATION

We have evaluated approximate-key caching using trace data
relating to traffic classification. The presented results are for
ideal caching for which we obtained closed formulas of easy
interpretation. We have verified by simulation on the same
data that LRU behaves similarly but we do not report results
here due to lack of space. We first introduce details of the
use case (Sec.V-A) and describe the properties of the dataset
(Sec.V-B). We then dig into the auto-refresh performance
(Sec.V-C) and finally compare approximate-key with state-of-
the-art similarity caching (Sec.V-D).

A. Traffic classification

Traffic classification is the act of labeling a network flow
with the application that generated it, and it is a well known
problem [23], [30], [31]. In particular, [23] compared several
DL traffic classifiers with models having different architectures
and sizes ranging from 300K to over 6M weights. While
not explicitly reported, it is well known that a DL model
inference is much slower (hundreds of milliseconds) than a
DRAM cache lookup (sub-microsecond). Common off-the-
shelf switches and other data-plane programmable hardware
can only run very simple ML models [32]. Traffic classification
is therefore an interesting use case to test the applicability of
approximate-key caching as it might help running DL models
where there are limited processing resources.

DL traffic classifiers commonly use packet time series as
input [23], i.e., input x is a vector of features (such as size in
bytes and direction) of the first N packets of a bi-directional
flow. Results discussed in [23] only pertain to the accuracy of
the DL models. In this paper, we are instead interested in as-
sessing the additional classification errors due to approximate-
key caching. We therefore use a perfect classification oracle
for the CLASS(·) function.

B. Dataset analysis

We used a private, large-scale dataset,1 comprising over
1M flows generated by over 76,000 devices. Each flow is
represented as a time series of the first 100 packets size (in
bytes) and direction (positive or negative) which is coupled
with a label (generated from a DPI engine) specifying one
among 200 application classes. We split the data into TCP
and UDP traffic portions, each of which can be handled by
a dedicated 1d Convolutional Neural Network (CNN) model,
with over 90% accuracy [33]. As TCP and UDP signatures
are radically different, for simplicity we report results only
for TCP traffic portion (which corresponds to 80% of bytes
and about half of flows) although we point out results are
similar for UDP.

To verify that our proposal works irrespective of the se-
lected APPROX (·) function, we use a subset of the functions
introduced earlier in Sec. III-A, namely, prefixn, suffixn, ev-
erynn, quantizen, for selected values of n. The approximations
significantly reduce the size of the input space (smaller vector

1We are investigating the possibility to release the anonymized dataset.

6

(a)

0.0 0.2 0.4 0.6 0.8
maxj {pij}

0.00

0.25

0.50

0.75

1.00

CD
F

prefix10
suffix10

everyn10
quantize32

(b)

0

20

40

60

80

100

ra
te

 [%
]

prefix10 suffix10 everyn10 quantize32

identity miss rate

error E(ideal)
nc miss 1 H(ideal)

(c)

Fig. 3. Dataset properties: impact of APPROX (·) function on object popularity skew (a); dominant label prevalence maxj{pij} (b); miss rate and error
without auto-refresh for cache capacity K = 10, 000 (c).

dimension or smaller elements) and increase the popularity
distribution skew while, of course, introducing undesirable
errors, as evaluated below.

1) Popularity skew and dominant classes: Fig. 3-(a) shows
the impact of selected APPROX(·) functions on popularity skew
in the transformed space X ′ compared to the original space
X (denoted “identity” function). It is apparent, especially
for prefix10, suffix10, and everyn10, that the frequency of
popular inputs increases significantly. This clearly improves
the potential hit rate compared to that of the original trace.

Fig. 3-(b) shows the probability distribution of maxj{pij}
for the considered APPROX(·) functions. We observe, es-
pecially for quantize32 and prefix10, that there is a high
proportion of approximate-keys having a dominant label. As
discussed in Sec.IV, suggesting the resulting error will be
small and quantize32 and prefix10 better APPROX (·) functions.

2) Hit rates and error rates: We first assess the hit rate and
error rate induced by APPROX(·) alone, i.e., approximate-key
caching without error correction. For a cache size K = 10, 000
elements, Fig. 3-(c) shows that the increased popularity skew
significantly reduces the fraction of inputs requiring CLASS(·)
inference, as captured by the miss rate 1 − H (ideal). The
miss rate decreases from over 95% for exact caching and
quantize32, to about 30% for suffix10, and less than 50% for
prefix10 and everyn10. Approximate-key caching can therefore
potentially halve the number of CLASS(·) inferences.

At the same time, approximate-key caching introduces er-
rors whose rate depends on the APPROX(·) function. Fig. 3-
(c) also shows that the error rate ranges between 5% (for
prefix10) and 60% (for suffix10). As per the previous analysis,
we expect auto-refresh to compensate for such errors by
more frequently verifying cached approximate-keys mapping
to multiple classes. Conversely, when such errors are small
(e.g., for prefix10 or quantize32), a few verification cycles
will suffice to further reduce the error without noticeable
effect on the hit rate. If errors are frequent for the considered
APPROX(·), this may offset the hit rate benefits as a verification
essentially boils down to running an actual CLASS(·) inference.
In the worst case of a badly designed APPROX(·) function, we

0 10 20 30 40 50 60
refresh rate R(ideal) [%]

0

5

10

15

20

25

er
ro

r r
at

e
E(id

ea
l) [

%
]

prefix5

prefix10

=1.3 =1.5 =1.7 =2.0

Fig. 4. Auto-refresh performance: error-vs-refresh rates trade-off induced by
different back-off values β for the APPROX(·)=prefixn function family.

expect the auto-refresh to correct cache mismatches for the
erroneous prefixes in a seamless manner.

C. Auto-refresh performance

We explore auto-refresh performance (i) by varying the
exponential back-off base β and (ii) by varying the APPROX(·)
function. The cache size is set here to K = 10, 000 but other
capacities have similar qualitative results.

1) Back-off parameter: We focus here on the prefixn ap-
proximation function that was shown above to have a favorable
hit rate vs error rate trade-off. This trade-off in fact depends on
the value of n: the popularity skew increases as n gets smaller,
bringing a higher hit rate, but this comes at the cost of a higher
error rate since fewer approximate-keys have a dominant class.
When n is large, on the other hand, the performance of prefixn
tends to that of the identity function.

Fig. 4 depicts, for different prefix function sizes
n∈{5, 10, 20, 50}, the refresh rate R(ideal) vs error rate E(ideal)

trade-off realized with different back-off values β. We observe
that, while performance varies as a function of n as expected
(i.e., shorter prefixes lead to higher errors) the impact of the
back-off is coherent (i.e., lines do not cross). In the rather
extreme case of n = 5, the error rate without error correction

7

5 10
0

20
40
60
80

100
Er

ro
r r

at
e

[%
]

4.5 1.4

45.2

5.0

prefix

5 10
0.7 1.3

72.4
59.9

suffix

20 10
2.0 1.5

60.4

36.3

everyn

32
0.2 0.5

quantize

auto-refresh
E(ideal)

no correction
E(ideal)

nc

5 10
0

20
40
60
80

100

In
fe

re
nc

es
 [%

]

42.8

3.0

55.3 47.6

5 10

74.3
61.1

90.2 90.6

20 10

62.1

37.9

83.2 83.3

32
0.2

93.1

Exact
caching
Refresh rate
R(ideal)

Miss rate
1 H(ideal)

Fig. 5. Auto-refresh performance: overall costs-vs-benefits for all APPROX(·)
functions when β = 1.5.

amounts to 45%. Notice that when β = 2, the auto-refresh
limits the error to about 17% with a refresh rate of 25% (i.e.,
one every four hits is verified); on the other hand, by setting
β = 1.3 it is possible to further halve the error to 8%, but at
the cost of an increased refresh rate of about 55%. The same
qualitative trade-off holds for other settings (e.g., n = 10 in
the picture) allowing one to tune the auto-refresh performance
through the choice of β depending on the use case (e.g.,
whether errors are tolerable and CLASS(·) is the dominant cost
or, on the contrary, the error needs to be bounded).

While in this work we statically set β, we argue that β
could be tuned dynamically to maintain the CLASS(·) inference
rate below a target value. A similar load control objective is
realized by “model switching” [34] where, depending on the
load, models with different complexity (thus different accu-
racy) are interchanged, i.e., under high demand, use models
with lower accuracy but faster inference, and vice versa. We
believe the present proposal to use approximate-key caching
and dynamically vary β will realize this objective more simply.
We leave the evaluation of such mechanisms to future work.

2) Approximation functions: We now fix the back-off rate
to β = 1.5 and assess auto-refresh performance for the full
range of APPROX(·) functions. Fig. 5-(top) compares the error
with (E(ideal), red bars) and without (E(ideal)

nc , grey bars) auto-
refresh. Results show that the proposed mechanism is able
to successfully correct even very large errors (in excess of
70%), leading to a remarkably low error rate (generally a few
percentage points).

Clearly, error reduction comes at the cost of a higher refresh
rate R(ideal). Fig. 5-(bottom) reports the overall CLASS(·)
inference rate, by stacking the refresh rate R(ideal) (verification
or cache values, dark color) with the miss rate 1 − H(ideal)

(inferences for objects not in the top 10,000, light color).
We observe that, with a few exceptions, the majority of the
inferences are due to auto-refresh. Notice that prefix yields the
best results, particularly when n = 10 (half the miss rate with
respect to exact caching, with only 3% verification required
to reach 1.4% error), though the error correction mechanism

yields satisfactory results even for admittedly sub-optimal
n = 5 settings (' half the miss rate, 42% of verification
to reach 4.5% of error). This reinforces the generality of the
approach, and alleviates the burden of designing and tuning
the APPROX(·) functions, as basic domain knowledge on the
use case at hand suffices to obtain good results.

D. Comparison to Similarity caching

We here compare approximate-key caching with similar-
ity caching focusing on two aspects: (i) the computational
complexity of the lookup operation and (ii) the accuracy of
the returned results. We further include complexity results for
exact caching as a reference.

1) Implementation details: All evaluations are performed
using Python 3.7. Specifically, for exact caching and
approximate-key caching we resort to the native Python dictio-
nary (i.e., key-value paired hash tables) while implementing
APPROX(·) functions in Python. For similarity caching, we
consider two alternative state-of-the-art kNN methods [28]:
BallTree as offered by the scikit-learn v0.23.2 li-
brary [35], and LSH as implemented by the lshashpy3
v0.0.8 library [36]. In a nutshell, a BallTree is a binary tree
partitioning the search space based on pair-wise distances [37];
LSH instead partition the search space using hash functions
based on randomized Gaussian projections [38]. We note that
the authors of these libraries have optimized their implemen-
tations by offloading complex operations to C libraries.2 We
used the default parameters and Euclidean distance to train a
BallTree, while we run LSH with a single hash table (more
hash tables just degraded the performance). In both cases
we search for the 10 closest neighbors, and apply majority
voting to select the output label. We also tested alternative
popular libraries like PyNNDescent [37] and observed no
performance differences.

2) Lookup duration: Fig.6-(top) depicts the average lookup
duration for various cache sizes K∈{103, 104, 105} and
caching paradigms. We train BallTrees an LSH caches using
the equivalent top-K objects (we tested also with a random
selection with no performance difference). We used prefix10
as APPROX(·) function. The evaluation was performed on a
Linux server equipped with Intel Xeon Platinum 8164 CPUs
@ 2.00GHz and the precise numerical results are relevant
only for this architecture. However, the relative performance
of the different paradigms remains relevant for alternative
implementations.

First, as expected, the cost of the approximate-key caching
lookup is only marginally higher than exact caching lookup
(due to the APPROX(·) computation) with both remaining on
the order of a micro-second for all explored cache sizes.
Second, similarity caching lookup duration is between 2 to
5 orders of magnitude larger and the penalty with respect
to approximate-key caching grows noticeably with the cache
size K. Third, while LSH may provide a faster lookup than
BallTree, its performance is sensitive to the settings used

2BallTrees use Cython [39], while lshashpy3 uses numpy [40].

8

1,000 10,000 100,000
cache size (K)

1 s
10 s

100 s
1ms

10ms
100ms

1s
lo

ok
up

 d
ur

at
io

n Exact
Approx-key
Sim: BallTree
Sim: LSH (8bit)
Sim: LSH (16bit)
Sim: LSH (32bit)
Sim: LSH (64bit)

Exact Approx-key
prefix10

=1.5

Sim
Balltree
dist=2

Sim
BallTree
dist=+

0
20
40
60
80

100

Hi
ts

 [%
] errors (K=1,000)

correct (K=1,000)
errors (K=10,000)
correct (K=10,000)

Fig. 6. Comparison to Similarity caching: lookup duration for different
implementations and settings (top) and hit rate breakdown between errors
and correct answers (bottom).

(number of bits for the hash size, and number of hash tables).
Moreover, the lookup duration remains significantly higher for
LSH than for approximate-key caching. The literature on this
aspect is also divided. In fact, while LSH is often cited as the
solution to speed up similarity caching [17], [22], other have
stated “As we know, LSH does not perform well on the ANN
[approximate nearest neighbor] problem compared with the
fancy optimization-based hashing methods. This is mainly due
to the random nature of its hash functions that is too weak to
capture the complex distribution of input features.” [41], and
we remark that scikit-learn also removed LSH due to
speed concerns [42].

Finally, note that a lookup duration '100ms starts being
comparable with the CLASS(·) inference duration that sim-
ilarity caching is meant to reduce, putting in question the
usefulness of similarity caching for this use case.

3) Accuracy of approximated answers: Fig.6-(bottom)
shows how approximate-key caching enables better error con-
trol with respect to similarity caching. In particular, we break
down hits between erroneous ones (red/pink bars) and correct
ones (black/grey bars stacked on top). Although we can tune a
BallTree to have a hit rate comparable to that of approximate-
key caching (distance threshold ε equal to 2), more than 65%
of the hits are errors. In contrast, approximate-key caching
generates less than 2% errors. Reducing the distance leads
to fewer hits overall but does not reduce the proportion of
errors. LSH yields similar performance results that are not
reported in the figure for the sake of brevity. In other words,
similarity caching is prone to errors since classes cannot be
easily separated in the input space. An accurate classifier
indeed requires a complex DL model.

VI. RELATED WORK

Related work on approximate caching can be found in the
areas of Deep Learning [7], [11]–[13], [43], [44], content

retrieval [10], [14], [16]–[21] and networking [45], [46], with
either a system or a theoretical flavor.

1) Application domain: Similarity caching has been applied
to a variety of domains including image search [14], [16],
[18], [19], text search [20], ads recommendation [10], [21],
multimedia [45], and sensor networks [46]. Notice that none
of these scenarios is related to classification tasks. A number
of proposals [7], [43], [44] aim to accelerate DL inference
by caching partial results at intermediate feed-forward layers,
and are thus orthogonal to our work as they require acting on
the inner mechanics of DL models. Conversely, several DL
inferences systems [11]–[13] simply use exact caching and
might greatly benefit from our proposal.

2) Similarity caching: Similarity caching uses a kNN
search. From a practical viewpoint, while multiple sur-
veys [27], [47] overview the abundant literature on kNN algo-
rithms and data structures, their computational cost remains
high [48], [49] requiring hardware-specific acceleration or
multi-core processing [50]. From a modeling viewpoint, the
theory behind similarity caching is still in its infancy [17],
[22], [51], [52]. In [17], the authors studied the approximation
space though the similarity function they use is an heuristic.
The authors of [51] instead frame similarity caching as an
optimization problem but fail to provide a dynamic policy.
More recently, [22] investigated the existence of an optimal
dynamic policy. However, none of these works directly apply
to classification.

3) Error control: To the best of our knowledge, no work
exists that explicitly tackles the issue of controlling the error
in the approximation. A few works [10], [21], [22], [52]
discuss the use of cost functions to trigger cache entry eviction
according to the similarity search outcome – with somewhat
complex means, e.g., a gradient boost regression tree to model
the cost function [10] or with gradient descent to discover
the best set of cache entries [52]. However, the error is not
formally analyzed, nor explicitly controlled – which is one of
the major contributions of this work.

VII. CONCLUSION

This paper introduces approximate-key caching, a new
caching paradigm for classification tasks that retains the
simplicity of exact caching, while increasing the cache hit
rate by significantly reducing the size and skew of the input
space. Additionally, approximate-key caching incorporates a
novel auto-refresh algorithm that controls the impact of errors
by explicitly verifying key-value mappings for selected input
queries. The algorithm has been analytically modeled and
thoroughly evaluated using trace data relating to a traffic clas-
sification use case. Overall, our work shows that approximate-
key caching is robust (as the auto-refresh mechanism can
significantly reduce even a very large rate of errors), simple
(as cache lookups are orders of magnitude faster than for
similarity caching), and effective (as it is easy to define
APPROX(·) functions that considerably reduce the number of
classification inferences needed).

9

REFERENCES

[1] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” in Proc. ANRW, 2018.

[2] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017.

[3] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proc. NIPS, 2016.

[4] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Proc. NIPS, 2015.

[5] Google, “Cloud tpu,” https://cloud.google.com/tpu/docs/system-
architecture, 2021.

[6] Y. Wang, G. Wei, and D. Brooks, “Benchmarking tpu, gpu, and
CPU platforms for deep learning,” CoRR, vol. abs/1907.10701, 2019.
[Online]. Available: http://arxiv.org/abs/1907.10701

[7] H. Bagherinezhad, M. Rastegari, and A. Farhadi, “Lcnn: Lookup-based
convolutional neural network,” in Proc. CVPR, 2017.

[8] S. Laskaridis, S. Venieris, M. Almeida, I. Leontiadis, and N. Lane,
“SPINN: synergistic progressive inference of neural networks over
device and cloud,” in Proc. MobiCom, 2020.

[9] J. Yang, Y. Yue, and K. Rashmi, “A large scale analysis of hundreds of
in-memory cache clusters at twitter,” in Proc. USENIX OSDI, 2020, pp.
191–208.

[10] C. Li, D. Andersen, Q. Fu, S. Elnikety, and Y. He, “Better caching
in search advertising systems with rapid refresh predictions,” in Proc.
WWW, 2018.

[11] D. Crankshaw, X. Wang, G. Zhou, M. Franklin, J. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system,”
in Proc. NSDI, 2017.

[12] D. Agarwal, B. Long, J. Traupman, D. Xin, and L. Zhang, “Laser: A
scalable response prediction platform for online advertising,” in Proc.
WSDM, ser. WSDM ’14, 2014.

[13] D. Crankshaw, P. Bailis, J. Gonzalez, H. Li, Z. Zhang, M. Franklin,
A. Ghodsi, and M. Jordan, “The missing piece in complex analytics:
Low latency, scalable model management and serving with velox,” in
Proc. CIDR, 2015.

[14] J. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey,
R. Jain, and C. Shu, “Virage image search engine: an open framework
for image management,” in Storage and Retrieval for Still Image and
Video Databases IV, vol. 2670, 1996, pp. 76 – 87.

[15] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G.
Lindsay, and J. F. Naughton, “Middle-tier database caching for e-
business,” in Proc. ACM SIGMOD, 2002, pp. 600–611.

[16] F. Falchi, C. Lucchese, S. Orlando, R. Perego, and F. Rabitti, “A metric
cache for similarity search,” in Proc. LSDS-IR, 2008.

[17] F. Chierichetti, R. Kumar, and S. Vassilvitskii, “Similarity caching,” in
Proc. PODS, 2009, pp. 127–136.

[18] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh, “isax 2.0: Indexing
and mining one billion time series,” in Proc. ICDM, 2010.

[19] T. Nguyen and E. Huh, “An efficient similar image search framework
for large-scale data on cloud,” in Proc. IMCOM, 2017.

[20] C. Gennaro, G. Amato, P. Bolettieri, and P. Savino, “An approach to
content-based image retrieval based on the lucene search engine library,”
in Proc. ECDL, 2010.

[21] S. Pandey, A. Broder, F. Chierichetti, V. Josifovski, R. Kumar, and
S. Vassilvitskii, “Nearest-neighbor caching for content-match applica-
tions,” in Proc. WWW, 2009.

[22] M. Garetto, E. Leonardi, and G. Neglia, “Similarity caching: Theory
and algorithms,” in Proc. IEEE INFOCOM, 2020, pp. 526–535.

[23] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted
traffic classification using deep learning,” in Proc. IEEE TMA, 2018.

[24] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in Proc. IEEE INFOCOM,
2014, pp. 2040–2048.

[25] E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroquín, “Searching
in metric spaces,” ACM Comput. Surv., vol. 33, no. 3, p. 273–321, Sep.
2001.

[27] P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search: The
Metric Space Approach, ser. Advances in Database Systems. Springer
US, 2006, vol. 32.

[26] H. Samet, Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling). Morgan Kaufmann Publishers Inc., 2005.

[28] G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-Neighbor Methods
in Learning and Vision: Theory and Practice (Neural Information
Processing). The MIT Press, 2006.

[29] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approx-
imation for lru cache performance,” in Proc. ITC, 2012, pp. 1–8.

[30] T. T. Nguyen and G. J. Armitage, “A survey of techniques for internet
traffic classification using machine learning.” IEEE Communications
Surveys and Tutorials, vol. 10, no. 1-4, pp. 56–76, 2008.

[31] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, 2018.

[32] Z. Xiong and Z. N, “Do switches dream of machine learning? toward
in-network classification,” in Proc. HotNets, 2019.

[33] A. A, “Hidden due to double blind review,” XXXX.
[34] J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg, “Model-

switching: Dealing with fluctuating workloads in machine-learning-as-
a-service systems,” in Proc. Hotcloud, 2020.

[35] Official documentation, “Scikit-learn balltree.” [Online]. Avail-
able: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
BallTree.html#sklearn.neighbors.BallTree

[36] lshashpy3. [Online]. Available: https://pypi.org/project/lshashpy3/
[37] PyNNDescent. [Online]. Available: https://github.com/lmcinnes/

pynndescent
[38] M. Slaney and M. Casey, “Locality-sensitive hashing for finding nearest

neighbors [lecture notes],” IEEE Signal Processing Magazine, vol. 25,
no. 2, pp. 128–131, 2008.

[39] Cython. [Online]. Available: https://cython.org/
[40] numpy. [Online]. Available: https://cython.org/
[41] K. Ding, C. Huo, B. Fan, S. Xiang, and C. Pan, “In defense of locality-

sensitive hashing,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 1, pp. 87–103, 2018.

[42] github, “Lsh was removed from scikit-learn.” [Online]. Available:
https://github.com/scikit-learn-contrib/scikit-learn-extra/issues/37

[43] M. Xu, M. Zhu, Y. Liu, F. Lin, and X. Liu, “Deepcache: Principled
cache for mobile deep vision,” in Proc. Mobicom, ser. MobiCom ’18,
2018, p. 129–144.

[44] A. Kumar, A. Balasubramanian, S. Venkataraman, and A. Akella,
“Accelerating deep learning inference via freezing,” in Proc. Hotcloud,
ser. HotCloud’19, 2019.

[45] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, “Soft cache
hits: Improving performance through recommendation and delivery of
related content,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 6, pp. 1300–1313, 2018.

[46] B. Yang and M. Mareboyana, “Similarity search in sensor networks
using semantic-based caching,” Journal of Network and Computer
Applications, vol. 35, no. 2, pp. 577–583, 2012.

[47] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim, “Return
of the lernaean hydra: Experimental evaluation of data series approxi-
mate similarity search,” Proc. VLDB Endow., vol. 13, no. 3, p. 403–420,
Nov. 2019.

[48] F. André, A. Kermarrec, and N. Le Scouarnec, “Cache locality is
not enough: High-performance nearest neighbor search with product
quantization fast scan,” Proc. VLDB Endow., vol. 9, no. 4, p. 288–299,
Dec. 2015.

[49] J. Johnson, M. Douze, and J. Jégou, “Billion-scale similarity search with
gpus,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2021.

[50] N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk,
S. Madden, and P. Dubey, “Streaming similarity search over one billion
tweets using parallel locality-sensitive hashing,” Proc. VLDB Endow.,
vol. 6, no. 14, p. 1930–1941, Sep. 2013.

[51] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, “Soft cache
hits: Improving performance through recommendation and delivery of
related content,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 6, pp. 1300–1313, 2018.

[52] A. Sabnis, T. Salemy, G. Neglia, M. Garetto, E. Leonardi, and
R. Sitaram, “Grades: Gradient descent for similarity caching,” in Proc.
IEEE INFOCOM, 2021, pp. 526–535.

10

http://arxiv.org/abs/1907.10701
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree
https://pypi.org/project/lshashpy3/
https://github.com/lmcinnes/pynndescent
https://github.com/lmcinnes/pynndescent
https://cython.org/
https://cython.org/
https://github.com/scikit-learn-contrib/scikit-learn-extra/issues/37

	I Introduction
	II Classification and caching
	II-A Classification tasks
	II-B Exact caching
	II-C Similarity caching

	III Approximate-key caching with error control
	III-A Approximate-key caching
	III-B Error control via auto-refresh

	IV Analytical model
	IV-A Approximate-key caching without error control
	IV-B Error control via auto-refresh
	IV-B1 LRU replacement
	IV-B2 Ideal cache

	IV-C Impact of error control
	IV-C1 Dominant class
	IV-C2 No dominant class

	V Trace-driven evaluation
	V-A Traffic classification
	V-B Dataset analysis
	V-B1 Popularity skew and dominant classes
	V-B2 Hit rates and error rates

	V-C Auto-refresh performance
	V-C1 Back-off parameter
	V-C2 Approximation functions

	V-D Comparison to Similarity caching
	V-D1 Implementation details
	V-D2 Lookup duration
	V-D3 Accuracy of approximated answers

	VI Related work
	VI-1 Application domain
	VI-2 Similarity caching
	VI-3 Error control

	VII Conclusion
	References

