Replication: Contrastive Learning and Data Augmentation in Traffic Classification Using a Flowpic Input Representation

A. Finamore, C. Wang, J. Krolikowski, J. M. Navarro, F. Cheng, D. Rossi Huawei Technologies SASU, France

ACM Internet Measurement Conference (IMC) Montreal, 24–26 Oct, 2023

If I had three wishes for the genie 👻

More "code challenges"

They can be occasion to release data and put focus on specific problems

Create one permanent replicability track/workshop

Decouple study state-of-the-art from promoting new ideas
Foster data/code sharing for the benefit of the community

2

Federate universities/research centers for data access/sharing Break the barrier of 1-to-1 cooperations

The data divide affects the whole measurements community AI-driven measurement methods is just exacerbating it

Lot of literature for a REPLICABILITY study on TRAFFIC CLASSIFICATION to choose from

...But

Replicability Track:

IMC 2023 will trial a new Replicability Track for s Jbmissions that aim to reproduce or replicate results that have been previously published at IMC. Papers accepted to this track will be published in ACM SIGCOMM Computer Communication Review (CCR). Priority will be given to replicability studies, although reproducibility studies are also in scope. For the definitions, please see **ACM's site**. The authors of outstanding replicability papers may receive an invitation to present at the main conference. In that case, the paper would also be included in IMC's proceedings (rather than CCR).

- 1. Introduce the IMC22 paper and set our goals
- 2. Datasets and methodology

3. Results

4. Closing remarks

1. Introduce the IMC22 paper and set our goals

2. Datasets and methodology

3. Results

4. Closing remarks

IMC22 paper : TLDR (1/2)

IMC22 paper : TLDR (2/2)

Evaluation settings

- UCDAVIS-19 dataset [1] 5 QUIC-based Google services
- Benchmarking flowpic computed from 15sec of traffic at different resolutions (32x32 → 1500x1500)
- 6 augmentations 3 image-based, 3 time series-based
- 100 samples per class augmented 10 times
- Contrastive learning via SimCLR [2] and finetune with 10 labeled samples

[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19
 [2] A Simple Framework for Contrastive Learning of Visual Representations, ICML20

IMC22 paper : TLDR (2/2)

Evaluation settings

- UCDAVIS-19 dataset [1] 5 QUIC-based Google services
- Benchmarking flowpic computed from 15sec of traffic at different resolutions (32x32 → 1500x1500)
- 6 augmentations 3 image-based, 3 time series-based
- 100 samples per class augmented 10 times
- Contrastive learning via SimCLR [2] and finetune with 10 labeled samples

Takeaways

- Time series transformations are superior wrt image transformations
- 100 labeled samples and a 32x32 flowpic are enough for good accuracy
- SimCLR performance almost on par with supervised training

[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19
 [2] A Simple Framework for Contrastive Learning of Visual Representations, ICML20

Our goals

ML reference baseline **NEW**

How complex is the problem? Do we really need DL?

Reproduce IMC22 augmentations benchmark in supervised setting + statistical analysis to compare augmentations NEW

Reproduce IMC22 contrastive learning benchmark + considering more scenarios NEW

Replicate G1 with **3 alternative datasets NEW**

Treat our paper a **"software deliverable"** Contribute curated artifacts

1. Introduce the IMC22 paper and set our goals

2. Datasets and methodology

3. Results

4. Closing remarks

							T	
						Pkts		
Name	Partition	Filter	Classes	All	Min (per class)	Max (per class)	ho (class imbal.)	Mean (per flow)
	Pretraining			6,439	592	1,915	3.2	6,653
UCDAVIS-19 [1]	Human	none	5	83	15	20	1.3	7,666
	Script			150	30	30	1.0	7.131
MIRAGE-19 [2]	n.a.	none	20	122,007	1,986	11,737	5.9	23
		>10pkts	20	64,172	1,013	7,505	7.4	17
		none		59,071	2,252	18,882	8.4	3,068
MIRAGE-22 [2]	n.a.	>10pkts	9	26,773	970	4,437	4.6	6,598
		>1,000pkts		4,569	190	2,220	11.7	38,321
UTMOBILENET-21 [4]	1 :010 1	none	17	34,378	159	5,591	35.2	664
	4-into-1	>10pkts	14	9,460	130	2,246	19.2	2,366

[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19

[2] The MIRAGE project: https://traffic.comics.unina.it/mirage/

						Flo	ws		Pkts
Name	Partition	Filt	er Clas	sses	All	Min (per class)	Max (per class)	ho (class imbal.)	Mean (per flow)
	Pretraining		Google Doc Google Music NOT Google Drive Google Search YouTube		6,439	592	1, <mark>915</mark>	3.2	6,653
UCDAVIS-19 [1]	Human	nor		5	83	15	Very	long flows	7,666
	Script				150	30	30	1.0	7.131
		nor	1e	20	122,007	1,986	11,737	5.9	23
MIRAGE-19[2]	n.a.	>1 <i>0</i> p	okts	20	64,172	1,013	7,505	7.4	17
		nor	10		59,071	2,252	18,882	8.4	3,068
MIRAGE-22 [2]	n.a.	>10pkts		9	26,773	970	4,437	4.6	6,598
		>1,000	Opkts		4,569	190	2,220	11.7	38,321
UTMOBILENET-21[4]	4 intend	nor	10	17	34,378	159	5,591	35.2	664
	4-into-1	>10p	okts	14	9,460	130	2,246	19.2	2,366

[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19

[2] The MIRAGE project: https://traffic.comics.unina.it/mirage/

Flows Pkts Name Partition Filter Classes *A*// Max Mean Min ρ (per class) (per class) (class imbal.) (per flow) 3.2 Pretraining - Large training set Light 20 1.3 UCDAVIS-19[1] 15 Human Small testing sets imbalance 30 30 1.0 Script 5.9 23 20 MIRAGE-19[2] n.a. 64,172 1,013 7.4 >10pkts 8.4 MIRAGE-22 [2] 4,437 4.6 6,598 >10pkts n.a. 4,569 >1,000pkts 159 5,591 664 34,378 17 UTMOBILENET-21 [4] 4-into-1 14 9,460 2,246 19.2 >10pkts

[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19

[2] The MIRAGE project: https://traffic.comics.unina.it/mirage/

							T	Dista
					FIO	WS		PKtS
Name	Partition	Filter Cl	Classes	All	Min (per class)	Max (per class)	ho(class imbal.)	Mean (per flow)
	Pretraining			6,439	592	1,915	3.2	6,653
UCDAVIS-19 [1]	Human	none	5	83	15	20	1.3	7,666
	Script			150	30	30	1.0	7.131
	n.a.	non Varie	ety of 20	122,007 <	Many 1	flows37	but short	→23
MIRAGE-19[2]		>10p/ Andr	oid apps 20	64,172	1,013	7,505	7.4	17
		none		59,071	2,252	18,882	8.4	3,068
MIRAGE-22 [2]	n.a.	>10p/ Only Meet	video 9	26,773	970	4,437	4.6	6,598
		>1,000pkts		4,569	190	2,220	11.7	38,321
UTMOBILENET-21 [4]	1 into 1	none In be	tween 17	34,378	159	5,591	35.2	664
	4-INTO- I	>10p/ datas	sets 14	9,460	130	2,246	19.2	2,366

[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19

[2] The MIRAGE project: https://traffic.comics.unina.it/mirage/

							T	
					Flo	ws		Pkts
Name	Partition Filter	Filter	Classes	All	Min (per class)	Max (per class)	ho (class imbal.)	Mean (per flow)
	Pretraining			6,439	592	1,915	3.2	6,653
UCDAVIS-19 [1]	Human	none	5	83	15	20	1.3	7,666
	Script			150	30	30	1.0	7.131
		none	20	122,007	1,986	11,737	5.9	23
MIRAGE-19[2]	curation >10pkts		20	64,172	1,013	7,505	7.4	17
		none		59,071	2,252	18,882	Larger	3,068
MIRAGE-22 [2]	n.a Data	>10pkts	9	26,773	970	4,437	4.6	6,598
	curation	>1,000pkts		4,569	190	2,220	11.7	38,321
UTMOBILENET-21 [4]		none	17	34,378	159	5,591	35.2	664
	4-Into- Data curation	n <i>>10pkts</i>	14	9,460	130	2,246	19.2	2,366

[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19

[2] The MIRAGE project: https://traffic.comics.unina.it/mirage/

Flowpics: *resolution*

Experimental settings Augmentations

S HUAWÉI

UCDAVIS-19	pretraining	Script	Human
------------	-------------	--------	-------

Performance metric: F1 score

Experimental settings (2/3) Modeling framework and Artifacts

Created a framework to

- Trigger multiple modeling campaigns
- Fine-grained tracking of model training/inference performance
- Collect model artifacts
- Bind modeling to dataset splits

Experimental settings (2/3) Modeling framework and Artifacts

Created a framework to

- Trigger multiple modeling campaigns
- Fine-grained tracking of model training/inference performance
- Collect model artifacts
- Bind modeling to dataset splits

Experimental settings (3/3) More from IMC22 paper's authors

The IMC22 paper has a github repo https://github.com/eyalho/mini-flowpic-traffic-classification

...but available code is not usable

- Code only for SimCLR pretraining
- Network architectures and training are not the same as in the paper
- As is, the code is mixing training includes also testing samples

We contacted IMC22 paper's authors mostly during camera ready ...but we received only short and delayed answers

Outline

1. Introduce the IMC22 paper and set our goals

2. Datasets and methodology

3. Results
1. ML baseline
2. Supervision
3. Contrastive learning

4. Closing remarks

ML Baseline

GO ML baseline

Input (size)	ze) Model Pap		Accuracy	Accuracy 95 th Cl		
		-	Script	Human		
Flowpic (32x32)	CNN LeNet5	IMC22	98.67 n.a.	92.40 n.a.		
(a) Flowpic (32x32)	XGBoost	Ours	96.80±0.37	73.65±2.14		
(b) Time series (3x10)	XGBoost	Ours	94.53±0.56	66.91 ±1.40		

(a) Flattened flowpic; (b) concat first 10 values of packet size, direction and inter arrival time Our results are aggregation of 15 experiments (5 splits x 3 seeds)

GO ML baseline

Input (size)) Model		Accuracy 95 th Cl			
		-	Script	Human		
Flowpic (32x32)	CNN LeNet5	IMC22	<u>¶</u> 98.67 n.a.	92.40 n.a.		
(a) Flowpic (32x32)	XGBoost	Ours	96.80±0.37	73.65±2.14		
(b) Time series (3x10)	XGBoost	Ours ^{-4.}	¹⁴ 94.53±0.56	66.91 ±1.40		

(a) Flattened flowpic; (b) concat first 10 values of packet size, direction and inter arrival time Our results are aggregation of 15 experiments (5 splits x 3 seeds)

• On Script, results on par with flowpic but lower performance with time series (10 pkts -vs- 15s of traffic)

GO ML baseline

Input (size)	Model	Paper	Accuracy 95 th Cl		
		-	Script	Human	
Flowpic (32x32)	CNN LeNet5	IMC22	£ 98.67 n.a.	<u>10</u> £ 92.40 <i>n.a.</i>	
(a) Flowpic (32x32)	XGBoost	Ours	96.80±0.37	73.65±2.14	
(b) Time series (3x10)	XGBoost	Ours ^{-4.}	¹⁴ 94.53±0.56	-25.49 66.91±1.40	

(a) Flattened flowpic; (b) concat first 10 values of packet size, direction and inter arrival time Our results are aggregation of 15 experiments (5 splits x 3 seeds)

- On **Script**, results on par with flowpic but lower performance with time series (10 pkts -vs- 15s of traffic)
- On Human, unexpectedly large differences

GO ML baseline

Input (size)	Model	Paper	Accura	cy 95 th Cl
		-	Script	Human
Flowpic (32x32)	CNN LeNet5	IMC22	£ 98.67 n.a.	<u>10</u> £ 92.40 <i>n.a.</i>
(a) Flowpic (32x32)	XGBoost	Ours	.87 96.80±0.37	-18.75 73.65±2.14
(b) Time series (3x10)	XGBoost	Ours ^{-4.}	¹⁴ 94.53±0.56	-25.49 66.91±1.40

(a) Flattened flowpic; (b) concat first 10 values of packet size, direction and inter arrival time Our results are aggregation of 15 experiments (5 splits x 3 seeds)

- On **Script**, results on par with flowpic but lower performance with time series (10 pkts -vs- 15s of traffic)
- On Human, unexpectedly large differences

Be very cautious to understand the cause of the performance discrepancy

Supervised settings

Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

			-	Test on Scr i	pt				7	lest on Hun	nan		Tes	st on Leftov	er
		IMC22			Ours		l	MC22			Ours			Ours	
flowpic res.	32	64	1500	32	64	1500	32	64	1500	32	64	1500	32	64	1500
No augment.	98.67	99.10	96.22	95.64±0.37	95.87±0.29	94.93±0.72	92.40	85.60	73.30	68.84 ±1.45	69.08 ±1.35	69.32±1.63	95.78±0.29	96.09±0.38	95.79 ±0.51
Rotate	98.60	98.87	94.89	$96.31{\pm}0.44$	$96.93{\pm}0.46$	95.69±0.39	93.73	87.07	77.30	71.65±1.98	71.08 ±1.51	68.19±0.97	96.76±0.35	97.00±0.38	95.79 ±0.31
Horizontal flip	98.93	99.27	97.33	$95.47{\pm}0.45$	$96.00{\pm}0.59$	$94.86{\pm}0.79$	94.67	79.33	87.90	69.40 ±1.63	70.52±2.03	73.90 ±1.06	$95.68{\pm}0.40$	96.32±0.59	95.97±0.80
Color jitter	96.73	96.40	94.00	$97.56{\pm}0.55$	$97.16{\pm}0.62$	$94.93{\pm}0.68$	82.93	74.93	68.00	68.43 ± 2.82	70.20±1.99	69.08±1.72	96.93±0.56	$96.46{\pm}0.46$	95.47 ±0.49
Packet loss	98.73	99.60	96.22	$96.89{\pm}0.52$	$96.84{\pm}0.63$	95.96 ±0.51	90.93	85.60	84.00	70.68±1.35	71.33 ±1.45	71.08 ±1.13	96.99±0.39	97.25±0.39	96.84 ±0.49
Time shift	99.13	99.53	97.56	96.71 ±0.60	$97.16{\pm}0.49$	$96.89{\pm}0.27$	92.80	87.30	77.30	70.36±1.63	71.89 ±1.59	71.08±1.33	97.02±0.50	97.51±0.46	97.67±0.29
Change RTT	99.40	100.00	98.44	97.29±0.35	97.02 ±0.46	96.93 ±0.31	96.40	88.60	90.70	70.76±1.99	71.49 ±1.59	71.97 ±1.08	98.38 ±0.18	97.97±0.39	98.19 ±0.22
Mean difi				-2.05	-2.26	-0.63				-21.96	-13.27	-9.13			

Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

				Test on Scr i	ipt				٦	lest on Hun	nan		Tes	st on Leftov	er
		IMC22			Ours		I	MC22			Ours			Ours	
flowpic res.	32	64	1500	32	64	1500	32	64	1500	32	64	1500	32	64	1500
No augment.	98.67	99.10	96.22	95.64 ±0.37	95.87 ±0.29	94.93±0.72	92.40	85.60	73.30	68.84 ±1.45	69.08 ±1.35	69.32 ±1.63	95.78±0.29	96.09±0.38	95.79 ±0.51
Rotate	98.60	98.87	94.89	96.31 ±0.44	96.93 ±0.46	95.69±0.39	93.73	87.07	77.30	71.65±1.98	71.08 ±1.51	68.19±0.97	96.76±0.35	97.00±0.38	95.79 ±0.31
Horizontal flip	98.93	99.27	97.33	95.47 ±0.45	96.00±0.59	94.86±0.79	94.67	79.33	87.90	69.40±1.63	70.52±2.03	73.90 ±1.06	95.68 ±0.40	96.32±0.59	95.97 ±0.80
Color jitter	96.73	96.40	94.00	97.56±0.55	97.16±0.62	94.93±0.68	82.93	74.93	68.00	68.43±2.82	70.20±1.99	69.08±1.72	96.93 ±0.56	96.46 ±0.46	95.47±0.49
Packet loss	98.73	99.60	96.22	96.89±0.52	96.84 ±0.63	95.96 ±0.51	90.93	85.60	84.00	70.68±1.35	71.33 ±1.45	71.08±1.13	96.99 ±0.39	97.25±0.39	96.84±0.49
Time shift	99.13	99.53	97.56	96.71 ±0.60	97.16±0.49	96.89±0.27	92.80	87.30	77.30	70.36±1.63	71.89 ±1.59	71.08±1.33	97.02±0.50	97.51 ±0.46	97.67±0.29
Change RTT	99.40	100.00	98.44	97.29 ±0.35	97.02 ±0.46	96.93 ±0.31	96.40	88.60	90.70	70.76±1.99	71.49 ±1.59	71.97±1.08	98.38 ±0.18	97.97 ±0.39	98.19±0.22
Mean diff	-	2.21		-2.05	-2.26	-0.63	-	12.19		-21.96	-13.27	-9.13			

From IMC22 evaluation

• 32x32 is superior to higher resolutions

Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

				Test on Scr i	ipt				_	Test on Hun	nan		Tes	st on Leftov	er
		IMC22			Ours			MC22			Ours			Ours	
flowpic res.	32	64	1500	32	64	1500	32	64	1500	32	64	1500	32	64	1500
No augment.	98.67	99.10	96.22	95.64 ±0.37	95.87±0.29	94.93±0.72	92.40			68.84±1.45	69.08 ±1.35	69.32 ±1.63	95.78±0.29	96.09 ±0.38	95.79 ±0.51
Rotate	98.60	98.87	94.89	96.31±0.44	96.93 ±0.46	95.69 ±0.39	93.73			71.65±1.98	71.08 ±1.51	68.19±0.97	96.76±0.35	97.00 ±0.38	95.79 ±0.31
Horizontal flip	98.93	99.27	97.33	95.47 ±0.45	96.00±0.59	94.86±0.79	94.67			69.40 ±1.63	70.52±2.03	73.90 ±1.06	95.68 ±0.40	96.32±0.59	95.97 ±0.80
Color jitter	96.73	96.40	94.00	97.5 6.61	97.16±0.02	94.9310.08	82.93			68.43±2.82	70.20 ±1.99	69.08±1.72	96.93 ±0.56	96.46 ±0.46	95.47±0.49
Packet loss	98.73	99.60	96.22	96.89±0.52	96.84 ±0.63	95.96 ±0.51	90.93			70.68±1.35	71.33±1.45	71.08±1.13	96.99±0.39	97.25±0.39	96.84±0.49
Time shift	99.13	99.53	97.56	96.71 ±0.60	97.16±0.49	96.89±0.27	92.80			70.36±1.63	71.89 ±1.59	71.08±1.33	97.02±0.50	97.51 ±0.46	97.67±0.29
Change RTT	99.40	100.00	98.44	97.29 ±0.35	97.02 ±0.46	96.93 ±0.31	96.40			70.76±1.99	71.49±1.59	71.97±1.08	98.38 ±0.18	97.97 ±0.39	98.19±0.22
Mean difi				-2.05	-2.26	-0.63				-21.96	-13.27	-9.13			

From IMC22 evaluation

- 32x32 is superior to higher resolutions
- Contained difference between
 Script and Human partitions

Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

			-	Test on Scr i	ipt				Т	est on Hun	nan		Tes	t on Leftov	er
		IMC22			Ours			MC22			Ours			Ours	
flowpic res.	32	64	1500	32	64	1500	32	64	1500	32	64	1500	32	64	1500
No augment.	98.67	99.10	96.22	95.64 ±0.37	95.87 ±0.29	94.93 ±0.72	92.40	85.60	73.30	68.84 ±1.45	69.08 ±1.35	69.32 ±1.63	95.78 ±0.29	96.09±0.38	95.79 ±0.51
Rotate	98.60	98.87	94.89	96.31 ±0.44	96.93 ±0.46	95.69±0.39	93.73	87.07	77.30	71.65±1.98	71.08 ±1.51	68.19±0.97	96.76 ±0.35	97.00±0.38	95.79 ±0.31
Horizontal flip	98.93	99.27	97.33	95.47 ±0.45	96 00+0.59	94.86±0.79	94.67	79.33	87.90	69.40 ±1.63	70 57+7.03	73.90 ±1.06	95.68 ±0.40	96.32±0.59	95.97 ±0.80
Color jitter	96.73	96.40	94.00	97.56±0.55	0.81 1.62	94.93±0.68	82.93	74.93	68.00	68.43±2.82	-0.64 99	69.08±1.72	96.93 ±0.56	$96.46{\pm}0.46$	95.47 ±0.49
Packet loss	98.73	99.60	96.22	96.89±0.52	96.84 ±0.63	95.96 ±0.51	90.93	85.60	84.00	70.68±1.35	71.33 ±1.45	71.08±1.13	96.99±0.39	97.25±0.39	96.84 ±0.49
Time shift	99.13	99.53	97.56	96.7 1±0.60	97.16±0.49	96.89±0.27	92.80	87.30	77.30	70.36±1.63	71.89 ±1.59	71.08±1.33	97.02 ±0.50	97.51±0.46	97.67±0.29
Change RTT	99.40	100.00	98.44	97.29 ±0.35	97.02 ±0.46	96.93±0.31	96.40	88.60	90.70	70.76±1.99	71.49 ±1.59	71.97±1.08	98.38 ±0.18	97.97±0.39	98.19±0.22
Mean diff				-2.05	-2.26	-0.63				-21.96	-13.27	-9.13			

From IMC22 evaluation

- 32x32 is superior to higher resolutions
- Contained difference between
 Script and Human partitions

From Our evaluation

• Small differences between resolutions but 1 model @1500x1500 takes ~20min vs <1min @32x32

Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

			-	Test on Scri	pt				7	Test on Hur	nan		Tes	st on Leftov	er
		IMC22			Ours		I	MC22			Ours			Ours	
flowpic res.	32	64	1500	32	64	1500	32	64	1500	32	64	1500	32	64	1500
No augment.	98.67	99.10	96.22	95.64±0.37	95.87±0.29	94.93±0.72	92.40	85.60	73.30	68.84 ±1.45	69.08 ±1.35	69.32 ±1.63	95.78±0.29	96.09±0.38	95.79 ±0.51
Rotate	98.60	98.87	94.89	96.31±0.44	$96.93{\pm}0.46$	95.69±0.39	93.73	87.07	77.30	71.65±1.98	71.08 ± 1.51	68.19±0.97	96.76±0.35	97.00±0.38	95.79 ±0.31
Horizontal flip	98.93	99.27	97.33	$95.47{\pm}0.45$	$96.00{\pm}0.59$	$94.86{\pm}0.79$	94.67	79.33	87.90	$69.40{\pm}1.63$	$70.52{\pm}2.03$	73.90 ±1.06	95.68±0.40	96.32±0.59	95.97 ±0.80
Color jitter	96.73	96.40	94.00	97.56 ± 0.55	$97.16{\pm}0.62$	$94.93{\pm}0.68$	82.93	74.93	68.00	$68.43{\pm}2.82$	70.20±1.99	69.08±1.72	96.93 ±0.56	96.46 ±0.46	95.47 ±0.49
Packet loss	98.73	99.60	96.22	96.89±0.52	$96.84{\pm}0.63$	95.96 ±0.51	90.93	85.60	84.00	70.68±1.35	71.33 ± 1.45	71.08 ±1.13	96.99±0.39	97.25±0.39	96.84 ±0.49
Time shift	99.13	99.53	97.56	96.71 ±0.60	$97.16{\pm}0.49$	$96.89{\pm}0.27$	92.80	87.30	77.30	70.36±1.63	71.89 ±1.59	71.08±1.33	97.02 ±0.50	97.51 ±0.46	97.67±0.29
Change RTT	99.40	100.00	98.44	97.29±0.35	97.02 ±0.46	96.93 ±0.31	96.40	88.60	90.70	70.76±1.99	71.49±1.59	71.97 ±1.08	98.38± 0.18	97.97 ±0.39	98.19±0.22
Mean diff				-2.05	-2.26	-0.63				-21.96	-13.27	-9.13			

4:

From IMC22 evaluation

- 32x32 is superior to higher resolutions
- Contained difference between
 Script and Human partitions

From Our evaluation

- Small differences between resolutions but 1 model @1500x1500 takes ~20min vs <1min @32x32
- Confirmed discrepancy observed via XGBoost

Each ours value is an aggregation of 15 experiments (5 splits x 3 seeds)

				Test on Scr	ipt				-	Test on Hun	nan		Tes	st on Lefto v	<i>i</i> er
		IMC22			Ours			MC22			Ours			Ours	
flowpic res.	32	64	1500	32	64	1500	32	64	1500	32	64	1500	32	64	1500
No augment.	98.67	99.10	96.22	95.64±0.37	95.87±0.29	94.93 ±0.72	92.40	85.60	73.30	68.84±1.45	69.08±1.35	69.32 ±1.63	95.78±0.29	96.09 ±0.38	95.79 ±0.51
Rotate	98.60	98.87	94.8 <u>9</u>	96.31±5.44	96.9310.40	95.69±0.39	93.73	07 -	0.23	71.65 ±1.98	71.0811.51	<u>68.19±0.97</u>	90.76 ±0.35	97.00 ±0.38	95.79 ±0.31
Horizontal flip	98.93	99.27	97.33	95.47 ±0.45	96.00±0.59	94.86±0.79	94.67	79.33	87.90	69.40±1.63	70.52±2.03	73.90 ±1.06	95.68±0.4 0	96.32±0.59	95.97 ±0.80
Color jitter	96.73	96.40	94.00	97.56±0.55	97.16	9 4.93 ±0.66	82.93	74.93	68.0	-0.23	70.20 ±1.99	<u>69.08±1.72</u>	96.93±0. 56	5.46 ±0.46	95.47±0.49
Packet loss	98.73	99.60	96.22	96.89±0.52	96.84±0.63	95.96 ±0.51	90.93	85.60	84.00	70.68±1.35	71.33±1.45	71.08 ±1.13	96.99 ±0.39	97.25±0.39	96.84 ±0.49
Time shift	99.13	99.53	97.5(96.71 ±0.60	97.16±0.49	96.89±J.27	92.80	87.30	//.30	7 0.36 ±1.63	-0.79 🔊	7 1.08 ±1.33	97.02±0.30	97.31±0.40	7.67 ±0.29
Change RTT	99.40	100.00	98.44	97.29 ±0.35	97.02 ±0.46	96.93 ±0.31	96.40	88.60	90.70	70.76±1.99	71.49 ±1.59	71.97 ±1.08	98.38 ±0.18	97.97±0.39	98.19±0.22
Mean diff				-2.05	-2.26	-0.63				-21.96	-13.27	-9.13			

44

From IMC22 evaluation

- 32x32 is superior to higher resolutions
- Contained difference between
 Script and Human partitions

From Our evaluation

- Small differences between resolutions but 1 model @1500x1500 takes ~20min vs <1min @32x32
- Confirmed discrepancy observed via XGBoost
- Leftover is consistent with Script

...so, what's the problem with Human?

Investigating human-vs-script performance gap Confusion matrixes

Investigating human-vs-script performance gap Confusion matrixes

UCDAVIS-19 human partition suffers from a data shift

confirmed by

 More analysis of the dataset
 Replication of results of [1] check our paper appendix G

Unclear why this did not affect IMC22 paper results

[1] How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, ICDM19

In the **IMC22** paper states that

- Change RTT is the best performing augmentations
- Time series augmentations are better than image transformations
 ...but no confidence reported

In the **IMC22** paper states that

- Change RTT is the best performing augmentations
- Time series augmentations are better than image transformations
 ...but no confidence reported

We study **augmentations performance** via critical distance [1]

- For the same input configuration, rank augmentations from best (1) to worse (7)
- Compute average rank for each augmentation
- Use a pair-wise post-hoc Nemenyi test based and CD to assess statistical similarity

Critical Distance (CD) = $q_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$

k : number of augmentations *N* : number of experiments q_{α} : studentized range statistic

Augmentations connected by horizontal lines are NOT statistically different

Augmentations connected by horizontal lines are NOT statistically different

Takeaway

- Augmentations improve performance
- Time series augmentations are not statistically different from image augmentations

Contrastive learning settings

Supervised -vs- Contrastive learning

In **supervised** training Good separation in the latent space leads to good performance ...but

- The (cross entropy) loss is computed after the classifier
- The latent space geometry is *indirectly* controlled

Supervised -vs- Contrastive learning

In **supervised** training Good separation in the latent space leads to good performance ...but

- The (cross entropy) loss is computed after the classifier
- The latent space geometry is *indirectly* controlled

In **contrastive learning** training

- First a model is trained in an unsupervised manner controlling the latent space geometry
- Then the learned representation is finetuned with a few labeled samples for the specific classification task

Self-supervision in contrastive learning

Base principle: In the absence of a label, a sample can only be similar to itself

Self-supervision in contrastive learning

Base principle: In the absence of a label, a sample can only be similar to itself

Self-supervision in contrastive learning

Base principle: In the absence of a label, a sample can only be similar to itself

- Positive and anchor form *their own class* \rightarrow harder problem than supervision
- The better the representation, the smaller the trainset to finetune a classifier

G2 Contrastive learning + finetuning (1/2) Small pretraining

- Which algorithm? SimCLR [1]
- Which augmentations? TimeShift and ChangeRTT
- Which dataset size? 100 samples for pretrain, 10 for finetune

G2 Contrastive learning + finetuning (1/2) Small pretraining

- Which algorithm? SimCLR [1]
- Which augmentations? TimeShift and ChangeRTT
- Which dataset size? 100 samples for pretrain, 10 for finetune

1 st augment.	IMCOO	Change RTT	Packe	t loss	Chan	ge rtt	Color jitter
2 nd augment.		Time shift	Color jitter	Rotate	Color jitter	Rotate	Rotate
Test on Script	94.5	92.18 ±0.31	90.17 ±0.41	91.94±0.30	91.72±0.36	92.38±0.32	91.79±0.34
Test on Human	~80.0	74.69±1.13	73.67±1.24	71.22±1.20	75.56±1.23	74.33±1.26	71.64 ±1.23

G2 Contrastive learning + finetuning (1/2) Small pretraining

- Which algorithm? SimCLR [1]
- Which augmentations? TimeShift and ChangeRTT
- Which dataset size? 100 samples for pretrain, 10 for finetune

1 st augment.	IMCOO	Change RTT	Packe	t loss	Chan	ge rtt	Color jitter
2 nd augment.		Time shift	Color jitter	Rotate	Color jitter	Rotate	Rotate
Test on Script	94.5	92.18 ±0.31	90.17 ±0.41	91.94±0.30	91.72±0.36	92.38±0.32	91.79±0.34
Test on Human	~80.0	74.69±1.13	73.67±1.24	71.22±1.20	75.56±1.23	74.33±1.26	71.64±1.23

Takeaways

- On **Script**, performance are comparable to IMC22
- On Human, still evident performance gap
- Any transformation pair is qualitative equivalent

[1] A Simple Framework for Contrastive Learning of Visual Representations, ICML20

G2 Contrastive learning + finetuning (2/2) Large pretraining

Lifting the constraint of 100 samples per class \rightarrow 80/20 train/val split on the whole pretraining

- Script improves in supervised setting
- Human improves in contrastive learning setting

		Script	Human
	No augmentation	98.37±0.19	72.95 ±0.96
	Rotate	98.47 ±0.25	73.73 ±1.09
Isec	Horizontal flip	98.20 ±0.15	74.58 ± 1.16
erv	Color jitter	98.63 ±0.21	72.47±1.02
dns	Packet loss	98.63±0.19	73.43±1.25
	Time shift	98.60±0.22	73.25±1.17
	Change rtt	98.33±0.16	72.47 ±1.04
Si	mCLR + fine-tuning	93.90 ±0.74	80.45±2.37

G2 Contrastive learning + finetuning (2/2) Large pretraining

Lifting the constraint of 100 samples per class \rightarrow 80/20 train/val split on the whole pretraining

- Script improves in supervised setting
- Human improves in contrastive learning setting

		Script	Human
	No augmentation	98.37±0.19	72.95±0.96
-	Rotate	98.47±0.25	73.73 ±1.09
Isec	Horizontal flip	98.20±0.15	74.58 ± 1.16
erv	Color jitter	98.63±0.21	72.47±1.02
Sup	Packet loss	98.63±0.19	73.43±1.25
	Time shift	98.60±0.22	73.25±1.17
	Change rtt	98.33±0.16	72.47 ±1.04
Si	mCLR + fine-tuning	93.90 ±0.74	80.45±2.37

Takeaways

- Augmentations are not the final replacement for real samples
- Contrastive learning can help to reduce data shift (?)

Other datasets

G3 Benchmarking augmentations on other datasets

	MIRAGE-22	MIRAGE-22	UTMOBILENET-21	MIRAGE-19
Augmentations	(>10pkts)	(>1000pkts)	(>10pkts)	(>10pkts)
No augmentation	90.97 ±1.15	83.35±3.13	79.82 ±1.53	69.91±1.57
Rotate	88.25±1.20	87.32±2.24	79.45 ±1.28	60.35±1.17
Horizontal flip	91.90 ±0.84	83.82±2.26	80.03±1.33	69.78±1.28
Color jitter	89.77 ±1.16	81.40±3.62	78.68 ±2.14	67.00±1.11
Packet loss	92.34 ±1.10	87.19±2.52	72.07 ±1.73	67.55 ±1.46
Time shift	92.80±1.21	86.73±3.88	81.91±2.21	70.33±1.26
Change RTT	93.75±0.83	91.48 ±2.12	81.32±1.54	74.28±1.22

Takeaways

Change RTT and Time Shift are better than other augmentations

Want more?

- Analysis of dropout
- Analysis of SimCLR projection layers
- ...and other details

1. Introduce the IMC22 paper and set our goals

2. Datasets and methodology

3. Results

4. Closing remarks

Closing remarks

Replication is incredibly hard ...but worth if **geared toward comunity contributions**

te Bench		Q Search
About tcbench	Datasets Modeling Papers	
Papers IMC23 O Artifacts S Notebooks	Contrastive Learning and Data Augmentation in Traffic Classification, IMC23 This work investigates the role of data augmentation by using both supervised and contrastive	Table of contents Scope of the study Takeaways
	learning techniques across 4 datasets, namely ucdavis-icdm19, mirage19, mirage22 and utmobilenet21. Biblex Abstract	
	<pre>@misc(finamore223contrastive, title={ Contrastive Learning and Data Augmentation in Traffic Classification Using a Flowpic Input Representation }, author={ Alessandro finamore and Chao Wang and Jonatan Krolikowski and Jose M. Navarro and Fuxing Chen and</pre>	
	Dario Rossi }, year=(2023), eprint=(2309.09733), archivePrefix=(arXi), primaryClass=(cs.LG)	

Qualitatively our results are aligned with the IMC22 paper but the UCDAVIS-19 data shift has an impact

There is **space for more research** in the areas touched by our paper (check our paper for inspiration 😉)

Code artifacts

https://github.com/tcbenchstack/tcbench

Data artifacts

https://doi.org/10.6084/m9.figshare.c.6849252.v3

Documentation

https://tcbenchstack.github.io/tcbench/papers/imc23/

