
AppClassNet: A commercial-grade dataset
for application identification research

Chao Wang
Huawei Technologies France SASU

chao.wang@huawei.com

Alessandro Finamore
Huawei Technologies France SASU
alessandro.finamore@huawei.com

Lixuan Yang
Huawei Technologies France SASU

lixuan.yang@huawei.com

Kevin Fauvel
ETH, Switzerland

kevin.fauvel@huawei.com

Dario Rossi
Huawei Technologies France SASU

dario.rossi@huawei.com

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
The recent success of Artificial Intelligence (AI) is rooted into sev-
eral concomitant factors, namely theoretical progress coupled with
abundance of data and computing power. Large companies can take
advantage of a deluge of data, typically withhold from the research
community due to privacy or business sensitivity concerns, and
this is particularly true for networking data. Therefore, the lack
of high quality data is often recognized as one of the main factors
currently limiting networking research from fully leveraging AI
methodologies potential.

Following numerous requests we received from the scientific
community, we release AppClassNet, a commercial-grade dataset
for benchmarking traffic classification and management methodolo-
gies. AppClassNet is significantly larger than the datasets generally
available to the academic community in terms of both the number
of samples and classes, and reaches scales similar to the popular
ImageNet dataset commonly used in computer vision literature. To
avoid leaking user- and business-sensitive information, we oppor-
tunely anonymized the dataset, while empirically showing that it
still represents a relevant benchmark for algorithmic research. In
this paper, we describe the public dataset and our anonymization
process. We hope that AppClassNet can be instrumental for other
researchers to address more complex commercial-grade problems
in the broad field of traffic classification and management.

CCS CONCEPTS
•Networks→Networkmeasurement; • Computingmethod-
ologies →Machine learning.

KEYWORDS
Open Dataset, Application Identification, Traffic Classification, Ma-
chine Learning, Supervised learning, Neural networks

1 INTRODUCTION
In recent times, Deep Learning (DL) techniques have attained sig-
nificant advances in the fields of Computer Vision and Pattern
Recognition (CVPR) and Natural Language Processing (NLP). Such

advances have equally benefited from (𝑖) the ground-breaking the-
oretical research, (𝑖𝑖) the availability of open-source software plat-
forms, (𝑖𝑖𝑖) the creation of efficient hardware accelerators and, last
but not least, (𝑖𝑣) the availability of large corpora training sets. For
instance, crowdsourcing efforts in the CVPR field led to the well-
known ImageNet [1] which comprises tens of millions of image
samples, each annotated with one among tens of thousands of class
labels. Similarly, in the NLP field the Common Crawl [2] project
gathered several hundreds of billions of text tokens.

This is in stark contrast with the networking field where a com-
monly identified limit to AI deployment is the lack of publicly
available large scale datasets. We point out that, over the years,
several research groups have indeed made commendable effort to
release datasets for networking research. In the context of network
operation and management (O&M) a quite fundamental building
block is constituted by the ability to recognize the type of traffic, or
specific application, that generated a particular stream of packets.
Different waves of research, in the early 2000s and late 2010s, have
tackled this use-case with Machine Learning (ML) and Deep Learn-
ing (DL) approaches respectively. As a side effect of the scientific
research, a number of datasets have been released (Sec.2). At the
same time, while these datasets are valuable to foster repeatability
and cross-comparison, academic groups generally lack (𝑖) access
to real operational networks environment, (𝑖𝑖) diverse operational
environment (e.g., residential access vs enterprise campuses) and
(𝑖𝑖𝑖) commercial-grade labeling tools.

To help tackling these limitations, we contribute to the research
community AppClassNet, a commercial-grade dataset for the pur-
pose of application identification. We used the private version of
such dataset in our previous work on federated training [69], zero-
day application detection [70] and inference acceleration at line rate
based on either hardware accelerators to speedup computation [32]
or approximated-key caching to save computation altogether [31].
AppClassNet is obtained from 10 TB worth of real traffic and com-
prises over 10M flows each of which is annotated by a commercial
and proprietary DPI system supporting thousands of labels. The
public version that we release and describe in this document retains
most of the richness of the original dataset (99% of the flows and
bytes) of the most popular applications, corresponding to 500 fine-
grained application labels. Roughly, AppClassNet is the networking



Conference’17, July 2017, Washington, DC, USA

equivalent of the popular ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) [1], an ImageNet subset comprising 1,000
classes and nearly 1.5M images. As this sheer size is significantly
larger than what it is currently available to the academic commu-
nity, we hope that AppClassNet can be an instrumental benchmark
for the community and foster research exploration towards more
realistic and ambitious challenges.

We point out that making publicly available (a subset of) any
private dataset is a delicate process, as opportune anonymization
is paramount to ensure that the data released is deprived of both
privacy- and business-sensitive information. Likewise, we also need
to make sure that the public version of the dataset obtained through
such anonymization still fits the original purpose – ML/DL models
created with the public and private version of the dataset offer
comparable performance. We point out that the goal of this paper
is not to propose a new technique for opportune anonymization.
Rather, we discuss the pre-processing steps taken to deprive the
dataset from sensitive information as (𝑖) to avoid a flawed “security
by obscurity” approach and (𝑖𝑖) to highlight the limitations of the
public datasets with respect to the original private one. We believe
that AppClassNet is a good enough compromise, as it allows re-
searchers to focus on algorithms design in a challenging network
use-case, despite the anonymization deprives most of the common
networking domain knowledge from the dataset.

In the following, we first review the literature on datasets and
collection methodologies (Sec. 2). Then, we introduce AppClassNet,
covering both the anonymization methodology as well as contrast-
ing the characteristic of the private and public version of the dataset
(Sec. 3). We next verify that the performance of state of the art ML
and DL techniques remains consistent between the private and pub-
lic version of the dataset (Sec. 4). Finally, we discuss AppClassNet
limitations and term of use (Sec. 5) and conclude the paper (Sec. 6).

2 BACKGROUND
The early 2000’s witnessed a first wave of traffic classification
with Machine Learning (ML) methodologies aiming to identify
fine-grained applications labels (e.g., YouTube, Skype, PokemonGo)
or coarse-grained services (e.g., video streaming, video call, gam-
ing). Then, the late 2010 have seen an explosion of interest toward
Deep Learning (DL) methodologies, essentially solving the same
problem but with a different set of techniques (see Sec.2.1)

The need for common benchmarks has pushed researchers to-
wards adoption of open-source datasets created to either address a
specific goal or as a side product of their research. In this section, we
review the relevant datasets and methods for traffic classification
and management focusing more on the adopted input rather than
the ML/DL tested on such data.

2.1 Use-case viewpoint
The goal of this paper is not to present a full background on the
application identification literature, but rather to discuss which
type of work could benefit from AppClassNet. The first wave of
traffic classification, well surveyed in [47], employed “classic” ML
techniques. As we overviewed in [70], such techniques adopted
an input based on either engineered Flow Features (FF) [45] or
Packet Payload features (PP) [18, 44], and culminated with the

adoption of simple, yet effective, Time Series (TS) features based
on properties of the first packets of a flow such as packet size
and direction [17] (and seldom interarrival time [17, 28]). These
lightweight TS approaches are particularly appealing since they
(𝑖) operate “early” at the beginning of a flow, as opposite to “post
mortem” techniques which compute FF after a flow ends, and as
such are suitable for traffic management and (𝑖𝑖) sustain line rate
operation with limited computational costs [29].

The second wave of traffic classification [20, 48] employs DL
techniques and essentially re-considers all inputs features previ-
ously introduced — from PP [42, 62, 63, 65], to FF [27, 57, 61], to
TS [41, 54], and hybrid FF+TS [27]. An independent comparison
of some of these recent works [41, 57, 62, 63] is carried out in [14],
by mean of a single dataset [13] that differs from the ones used
by original authors, and the analysis reveals a different scenario
from the one pictured by the original publications: (𝑖) TS features
confirm their interest, but the expected performance drops sig-
nificantly below <90% for any architecture; (𝑖𝑖) there is no clear
winner, although 1d-CNN models have consistently better results
among the candidate approaches; (𝑖𝑖𝑖) 1d-CNN has a limited gain
against shallow Multi Layer Perceptron (MLP) over the same input
(+6%) or against Random Forest (RF) over FF input (+3%). Under this
viewpoint, we argue that application identification is still quite an
active research area. As we shall see later, AppClassNet constitutes
an even more challenging benchmark with respect to the dataset
used in [14] or MIRAGE19 [13], and should empower researchers
to spend more time on algorithmic aspects rather than investing
effort in scattered data collection.

2.2 Datasets viewpoint
Over the years, several datasets have been open-sourced for bench-
marking of traffic classification algorithms, summarized in Table 1.
We point out that other datasets have been released (see [13] for a
comparison). Yet, many of those are collected in the context of In-
trusion detection systems (IDS) (as surveyed in [52]). As such, they
have a different purpose (distinguishing malicious from benign traf-
fic) and a much less fine-grained labeling (few attack types). Some
of these datasets became popular within the traffic classification
community, yet one can question their representativeness for traffic
classification commercial deployments. Conversely, AppClassNet
explicitly aims to offer the larger and more diversified set of traffic
typical of commercial settings.

Generally speaking, two methodologies for datasets collection
can be employed: (𝑖) Active collections gather traffic from a spe-
cific set of applications, whereas (𝑖𝑖) Passive collections gather real
environment traffic without a specific set of applications defined.
While both methods require instrumentation effort, active collec-
tions setup are typically more involved. For instance, they typically
employ kernel-level modification [35] to annotate executable names
polled from kernel information along with packet traces or strace
kernel logs[13], which allow for more fine-grained ground truth
labels. This instrumentation effort coupled with the adoption of real
users manually-driven procedures [3, 13, 35] limits the collections
to relatively small scale experiments. Only rare exceptions reach
large scale but rely on automated but synthetic collections rather
than real users [39]. Conversely, passive collections benefit of large



AppClassNet: A commercial-grade dataset
for application identification research Conference’17, July 2017, Washington, DC, USA

Table 1: Subset of publicly available datasets for traffic classification

Dataset Year Classes Flows Flows/class Comment

UniBS [35] 2009 7 78.9k 11.3k Pcap; Ground truth devised with kernel-level modification
Bujlow et al.[24] 2015 25 559k 22k Cross-comparison of 4 open-source and 2 commercial DPI tools
Mirage[13] 2019 40 100k 2.5k Active pcap traffic collection for 40 mobile apps from 380 participants
Cross platform[3] 2012 411 102k 248 Active pcap collection of 411 apps from several students participants
ReCon[51] 2015 512 (+5) 29k (+141 k) 56 (+28k) Automated collection for top-apps (+multiple versions for 5 apps)
Andrubis[39] 2014 1 M 41M 41 Automated collection of startup traffic for apps from 15 market places

AppClassNet 2022 200+300 9.7M+0.3M 48.3k+1.1k 200 popular + 300 unpopular applications, covering ≃99% of traffic volume

volumes of traffic and cover more diversified users behavior and set
of applications, but incur in an extra effort to get ground truth label,
e.g., labels can come from open-source [4–6] or commercial [7–9]
DPI tools, as compared in [24]. AppClassNet falls in the latter cat-
egory and is obtained from a passive collections of 10 TB worth of
traffic labeled via a commercial DPI tool (see Sec. 3.4).

Complementary to [14] (that compares several DL architectures
on a single dataset), [59] offers a longitudinal analysis of feature
importance across datasets (including some of the ones reported in
Table 1). The study confirms that (aside TLS-related and inter-flow
timing information), the packet size, direction and inter-arrival
within a single flow are the features with the highest discriminative
power. Thus, both [14] and [59] confirm TS as relevant across
DL architectures and datasets, making it the “canonical” input for
application identification tasks. As such, AppClassNet limits the
available input to the TS data. In releasing AppClassNet, we point
out that we do not believe it should be the one and only benchmark
for traffic classification. Rather, we hope that it can become one of
the several benchmarks (e.g., those in Table.1 and beyond) that are
normally used in ablation studies, as commonly done in computer
vision research.

3 DATASET
As early outlined, the private dataset we used in [31, 32, 69, 70]
needs to be deprived of business-sensitive information prior to
public release. In this section we start discussing the goals for the
transformation process (Sec.3.1), next we outline the available and
selected anonymization method (Sec.3.2 and Sec.3.3) and finally
we contrast the characteristics of the original private against the
publicly released dataset (Sec.3.4).

3.1 Private and business-sensitive information
We refer to anonymization as a transformation process that alters
a dataset for depriving it of both (i) private information as well as
(ii) business-sensitive information

3.1.1 Private information. Privacy-sensitive information is data
that can be traced back to a specific user and his/her behavior
and location. This includes information about exact timing, IP ad-
dresses, protocol headers field values (e.g., HTTP URLs and header
options such as User-Agent) and packet-payload (e.g., the body of
HTTP GET and POST messages). Non-private information instead
comprises other data such as protocol headers field values (TCP
flags and options, IP message size, IP header length) and relative

timing (e.g., the time elapsed between two packets, the RTT). The
TS-related input features (e.g., raw packet size) previously described
fall into this class of non-private information. We understand that
from a network-expert viewpoint it would be desirable to employ
prefix-preserving IP anonymization techniques as well as to retain
exact timing information across flows [59], as they could assist the
classification of multiple flows of the same endpoint, or multiple IP
addresses in the same range. However, IP addresses are considered
as private information according to both the European GDPR [10]
and the Chinese PIPL [11] regulations. Hence, to minimize risks of
privacy leaks, IP addresses and absolute timing information are not
even available in our private version of the dataset.

3.1.2 Business-sensitive information. Business-sensitive data are
orthogonal to users privacy but equally important. In fact, despite
not being privacy-sensitive, early described TS-related input fea-
tures (e.g., raw packet size and direction) have business-sensitive
value. Indeed, if exact application signatures and application labels
were to be released, then a third-party could train (and sell) an
operationally useful model. This is of course delicate from a busi-
ness viewpoint, for which it would be desirable that models created
on public dataset have no operational/commercial (which is the
goal of this section). At the same time, to retain interest for the
academic community, the public dataset should have comparable
performance with respect to models obtained using the private
dataset, i.e., working on the public dataset should provide a task of
roughly equal hardness as the one of the private dataset (Sec.4).

3.2 Anonymization background
As previously introduced our private dataset does not contain sen-
sitive user-related information. While IP addresses anonymization
is a topic that has attracted historical [66] and recent interest [43]
in reason of GDPR regulation, those techniques do not fit our needs.
Similarly, as our input consists of TS data, at first sight work on
time-series anonymization could appear more appropriate (e.g.,
see [56] and references therein). However, those methods gener-
ally aim to protect user privacy (e.g., the input are GPS trace logs),
which is generally relevant, but orthogonal to our need.

Luckily, with the growing need to share data and code for re-
producibility in ML/DL, a series of work [37, 40, 67, 68] started to
tackle general mechanisms for altering the data with the goal of
privacy protection and resilience to de-identification, i.e. prevent-
ing an attacker from identifying matching pairs between raw and
encoded samples. These work have generally been applied on image



Conference’17, July 2017, Washington, DC, USA

datasets aiming to limit the distortion of the shared dataset [40],
possibly hiding private data using noise from very large available
image datasets [37] or through learned transformation [67, 68].
Yet among the above works, only [68] attempts at estimating the
amount of guesswork that an attacker should spend to succeed a
re-identification attack — in our case, a successful re-identification
attack allows to uncover the true application labels of the dataset,
hence breaking business privacy. More worrisome, [68] also shows
previous work to be [37, 40] easily breakable.

Moreover, we observe that these techniques are very recent and,
in some cases, not even peer-reviewed yet: thus, the downside of
using any of these methods is that security flaws may just not have
been uncovered yet. To make a couple of examples, data smashing
layers of Split Learning [60] (proposed in 2018, not peer-reviewed
but quite popular) were demonstrated to not be secure [49] (in 2021,
published at ACM CCS but not yet popular at all). Similarly, Neu-
raCrypt [67] claims to be secure (in 2021, not yet peer reviewed),
while other research claims the opposite [25] (in 2021, not yet peer
reviewed). Finally, even the most promising method (Syfer [68]
that attempts at directly estimating the level of security) are based
on extremely simplifying assumptions (e.g., uniform data distribu-
tion [68], while our dataset exhibit significant skew) – the actual
level of privacy protection of these general mechanisms remains
unclear at this stage.

3.3 Methodology
As per the above discussion, it appears that general and provably
secure methodologies are unfortunately not readily available. As
security is essentially a risk-vs-cost tradeoff, we ultimately settle on
a practical approach where we estimate the cost to reverse engineer
the released dataset exceeds the cost of performing a data collection
ex novo. In fact, if the data collection cost (i.e., engineering testbeds
such as those listed in Table 1 as the community has done in the
last decades) is smaller than the cost of reverse engineering, then
there would be no business incentive in the latter. Reverse engi-
neering would still remain an intellectual exercise but we forbid it
in AppClassNet terms of use (Sec.5).

We argue that a good compromise is the joint use of (𝑖) tech-
niques that alter the amplitude of individual time series elements,
i.e., the size 𝑥𝑖 of the 𝑖-th packet as in 𝑦 = ℎ𝑎𝑠ℎ(𝑥𝑖 ) combined
with (𝑖𝑖) techniques that shuffle the whole sequence, e.g., by swap-
ping 𝑖-th and 𝑗-th elements. We empirically show that neither of
the two techniques is sufficiently strong to avoid leakage of sensi-
tive information if used in isolation, while the combination of the
two achieves the desired effect without completely destroying the
dataset usability.

3.3.1 Component-level techniques. Consider the homomorphic en-
cryption function:

𝑦 = ℎ𝑎𝑠ℎ(𝑥 + 𝑠) (1)
where ℎ𝑎𝑠ℎ(·) is a cryptographic hash function, 𝑥 is a time series
element and and 𝑠 an arbitrary salt. Although the cryptographic
function cannot be inverted (unless it is compromised) it is not
stronger than a mono-alphabetic substitution cipher. Indeed, our
input time series are unbalanced due to an expected skew in the
packet size distribution – by leaving TCP ACK packets in the time
series or simply checking full-payload packets one can identify

very popular patterns. Thus, an attacker can easily guess the salt
𝑠 by brute force, by considering only the most common packet
sizes. This would not be possible in case packet sizes were equally
distributed, but such condition is unrealistic from data collected
from real networks. For the same reason, it is unclear if this skew
can negatively impact the security of Syfer [68], which assumes
balanced input distribution. Clearly, the adoption of multiple salts
(e.g., per application, or per position in the time-series) can increase
security, with the downside of more severe modification to the
original data patterns and distribution.

3.3.2 Sequence-level techniques. Consider now a bijective permu-
tation of the original time series 𝑥 as:

𝑦 = 𝑝𝑒𝑟𝑚(𝑥) (2)

which alters time series elements order. Moreover, we define such
transformation to be “static”, i.e., the same reordering is applied
to all time series in the dataset. Whereas at first sight, selecting
one out of the 𝑛! permutation of a 𝑛-component long sequence
would protect the business sensitive data, the expected skew in the
application popularity will again defeat the security of the approach.
Indeed, permutation of the sequence does not alter the sequence
unicity, so that the most frequent sequence is still easily identifiable.
In this case, with a relatively low cost, an attacker could gather
by his/her own means (e.g., with active experiments) new sample
time series 𝑥 of the most popular applications (according to Cisco
VNI, Sandvine, etc.) and next attempt at reverse engineering the
permutation.1 As in the previous case, this can be countered, e.g.,
by using several permutations (e.g., per group of applications, or
per individual application, etc.), which would further break the
temporal correlation in the sequence, and reduce the usefulness of
the dataset for research purposes. As in the previous case, the impact
of the imbalance in the application-popularity might negatively
affect the strength of security provided by approaches such as [68].

3.3.3 Combined Component and Sequence level. Clearly, combin-
ing permutation and hashing makes reverse engineering harder
to the point where it is may no longer be cost-effective (as the
reverse engineering cost grows above the data collection cost), thus
rendering it a mere exercise intellectual exercise (that we prohibit
in the terms of use described in Sec.5).

Trading off between scrambling the data to the point of being
useless and the risk of sensitive information leak, we settle to:

𝑦𝑖 =
ℎ𝑎𝑠ℎ64 (𝑥 𝑗 + 𝑠𝑖 ) − 263

264
(3)

where the (𝑖, 𝑗) pair represents a generic pair of columns which
are swapped once for the whole dataset (e.g., so that the first three
0-payload packets of a TCP application are not expected to be SYN,
SYN-ACK, ACK). Additionally, a set of arbitrary parameters 𝑠𝑖 is
used to salt the 64-bit wide hash function ℎ𝑎𝑠ℎ64 (·) for hashing
the 𝑖-th samples. Thus packets with the same sizes are hashed
to different values depending on their permuted positions in the
sequence. Finally, the output is normalized in [-1,1] for convenience.

1Assuming that the packet size sequence is exactly the same, i.e., packet sizes do not
differ even a single byte, which is unlikely (but not impossible) for some time series:
in case attackers do not get the exact same sequence of packet sizes, a 1-bit input
difference flips on average 1/2 of the output bits due to hashing.



AppClassNet: A commercial-grade dataset
for application identification research Conference’17, July 2017, Washington, DC, USA

Table 2: Commercial-grade dataset description

Sl
ic
e Property Popular Unpopular Public Private

Nickname top-200 next-300 pub-500 all-3k
Public release ✓ ✓ ✓ ✗

La
be

ls

App (#) 200 300 500 3,073
App (%) 6.5% 9.8% 16.3% 100.0%
Flow/app (max) 1,000,864 3,050 1,000,864 1,000,864
Flow/app (avg) 48,299 1,071 19,963 3,272
Flow/app (min) 3,080 382 382 1

Vo
lu
m
e Flows (#) 9.7M 0.3M 10.0M 10.1M

Flows (%) 95.7% 3.2% 98.9% 100.0%
Bytes (#) 10.0 TB 0.3 TB 10.4 TB 10.4 TB
Bytes (%) 96.4% 2.8% 99.2% 100.0%

The use of multiple salts makes reverse engineering cost higher.
Indeed, while in principle for SYN and SYN-ACK packets it still
possible to rely on the popularity skew to guess their likely positions
in the permuted sequence, and next brute-force the corresponding
salt 𝑠𝑖 , however guessing a single 𝑠𝑖 is not informative to learn 𝑠 𝑗 for
the other sequence positions. As such, even finding the top-most
popular sequence is more complex, which we estimate to be good
enough from our practical purpose.

3.4 Private vs Public dataset characteristics
3.4.1 At a glance. As mentioned before, the original dataset corre-
sponds to about 10 TB of per-flow logs enrichedwith labels obtained
from a commercial and private DPI tool. Such data comprises both
TCP and UDP traffic, and for each flow a time series is collected
with first 20 packets size and direction (for TCP, ACK packets are
preserved). In other words, the dataset has a 20 (features) + 1 (label)
tabular schema (i.e., direction is encoded as sign for packet sizes).

Table 2 breakdowns the public-vs-private datasets composition.
While the private dataset comprises 3,073 applications, the public
AppClassNet includes only the top-500 (16.3% of all labels) which
account for 98.9% of flows and 99.2% of bytes. Out of the public
dataset, we further identify two subsets: the top-200 most popu-
lar applications correspond to 95.7% (96.4%) of flows (bytes) with
48,299 samples/app on average (well suited for classic supervised
training), complemented by the set of next-300 (and thus less) pop-
ular application, with 1,071 samples/app on average (well fit for
zero-day traffic classification, or few shot learning).

Notice the high class imbalance in both top-200 and next-300
dataset slices: the top-1 application comprises over 1M samples,
the 200-th most popular application only comprises 3,080 samples
(about 325× time less) and the 500-th only 382 (the least numerous
class in AppClassNet). This skew is rather typical in network traffic
but is significantly higher than in image datasets. For instance, the
nearly 1.5M images in ImageNet [53] are divided into 1,000 classes,
each having between 668–3,047 training samples, i.e., a modest 4.5×
difference between the most and least popular classes.

3.4.2 Impact of transformation. The described transformation al-
ters some of the properties of the dataset which we briefly illustrate
here and that we discuss more broadly in Sec. 5.

Fig. 1 illustrates the effect of hashing considering the first el-
ement of the time series (the effect is qualitatively the same on
other time series elements). Domain knowledge states that the first

1500

1000

500

0

500

1000

1500
Private

0.50

0.25

0.00

0.25

0.50
Public

Figure 1: Violin plot of the first signature component in the
Private (left: packet size) vs Public datasets (right: permuted,
salted and hashed value).

packets of a flow are commonly dominated by small packet sizes.
For instance, in TCP traffic, those are 0-payload SYN packets due
to TCP three-way handshakes, where variability is also due to the
presence/absence of IP and TCP options, as well as the presence of
UDP traffic in the traffic mixture. In the public dataset (Fig. 1 right
chart), the first component has been chosen by permutation (so that
it can be any of the 20 elements of the time series) and addition-
ally has been transformed via homomorphic encryption: while the
normalized packet size distribution still exhibits clear modes, any
domain expertise in this case is meaningless — there is no way to
tell whether the modes tie to full-payload segments, 0-payload ac-
knowledgements, or other dynamics. Otherwise stated, networking
domain knowledge is no longer relevant for AppClassNet.

Additionally, permutations may affect other typical ablation
studies, such as the sensitivity of classification performance to
time series length as investigated by many works in the literature.
However, due to the permutation, the first 𝑘 components of the
time series no longer correspond to the first 𝑘 packets of a flow, so
extrapolate networking-domain conclusions should be avoided (e.g.,
“fewer packets suffice for successful classification”). For instance,
mutual information between the first component and the class label
is higher in the public dataset, since the first element of the time
series is not (confidently) a TCP SYN anymore.

4 BASELINE
In this section we verify that, despite AppClassNet no longer has
business-relevance (as it is not a real dataset due to the transforma-
tion), it is still meaningful from an academic research viewpoint (as
a relevant dataset of benchmarking).

We do so by studying the performance (Sec. 4.2) across different
state of the art ML/DL models (Sec. 4.1). However, the goal of this
editorial note is not to perform a fully fledged study (e.g., as in [14]),
but rather to contrast the baseline performance obtained from both
public and private version of the dataset.

4.1 Baseline models
We adopt both traditional ML and DL state of the art methods as
baselines. First, we decided to evaluate the prediction performance
of two traditional tree-based models with different complexities: a



Conference’17, July 2017, Washington, DC, USA

Table 3: Performance of several ML/DL baselines on the top-200 slice of the public AppClassNet vs private datasets

Decision Tree† Random Forest† 1d-CNN‡ ResNet‡

Dataset Rank Acc Depth Rank Acc. Depth Rank Acc. Params Rank Acc. Params

Private 2 93.5% 71 1 94.7% 65 4 84.7% 275k 3 90.8% 318k
Permuted 2 93.5% 71 1 94.7% 65 4 81.9% 275k 3 88.8% 318k
Public (AppClassNet) 2 86.9% 78 1 88.3% 88 4 72.1% 275k 3 80.3% 318k
†ML: default scikit-learn configuration, random_state=0
‡DL: epochs=1000, batch_size=1024, learning_rate=0.01

single CART [23] decision tree and an ensemble of trees via a Ran-
dom Forest [22]. Then, we integrate in our benchmark some com-
monly adopted state of the art DL methods: a classic 1d-CNN [33]
and ResNet [36].

Specifically, we used Scikit-Learn [50] for traditional ML base-
lines (DecisionTreeClassifier, RandomForestClassifier) with their
default parameters and the random state set to 0. For DL baselines,
we implemented the 1-d CNN (3 convolutional ReLU layers) and
ResNet (2 residual blocks) in PyTorch and trained models for 1,000
epochs, with batch size of 1,024 and a 0.01 learning rate. To ease
the bootstrapping cost of using AppClassNet, we also provide the
code for both to import the data and to replicate results [12].

4.2 Baseline performance
We contrast baselines performance of ML and DL models in Table 3.
For each model we report the raw classification accuracy for top-
200 and the model accuracy rank (the lower, the better) on the test
set. Without loss of generality, we release AppClassNet structured
with separate train/validation/test splits to simplify reproducibility
(although the use of alternative splits for 𝑘-fold cross-validation is
authorized and rather recommended). The dataset has been normal-
ized as a preprocessing step using Scikit-Learn [50] (MinMaxScaler).
Additionally, the depth (average depth) of the decision tree (ran-
dom forest) and the total number of trainable parameters for DL
approaches are reported as proxy of models complexity.

The effect of permutations. We compare the performance across
three variations: the private dataset, an intermediate step where
only permutation is applied, and the public AppClassNet where
both permutation and component hashing are applied. The inter-
mediate step is added as a litmus test — we expect permutations
to have little impact on tree-based ML, where the order of the fea-
tures is not important; we conversely expect permutation to have
a larger impact on the DL models as they break the correlation in
the sequences, hence making it harder for convolutional filters to
extract relevant patterns. This is indeed what can be observed in
Table 3: performance of tree-based approaches remain identical
between private and permuted, whereas DL models loose about
2-3% accuracy.

The effect of hashing. Intuitively, hash functions spread compo-
nent far apart (1/2 of bits change in the output for 1-bit change in
the input) resulting in additional branching in trees that inflates
their depth by 1.09× (average random forest depth by 1.35×) and re-
duces accuracy by 6-7%. DL-models size is instead fixed and results
into a slightly higher accuracy loss of 9% compared to tree-based

models. Clearly, one can adjust both architecture parametrizations
and obtain different results, as we show in [70].

Rank consistency. From a higher viewpoint, the rank of the con-
sidered models is consistent across the three dataset variations.
Albeit the quantitative results provide a conservative estimate of
performance in real settings (by about 6-10%), the qualitative com-
parison retains full informative value — in our option, this strongly
indicates that AppClassNet is suitable for research purposes.

Challenging dataset. Finally, the dataset is interesting as it rep-
resents an instance where classic tree-based ensembles perform
better than DL on tabular data [55]. Clearly, the Table 3 has been
obtained for specific architectures and hyper-parametrizations, and
results are meant as a qualitative reference baseline in spirit with
the Ockham razor principle. Thus, we do not rule out DL approaches
completely, e.g., as DL gradient backpropagation has a significant
competitive advantage for zero-day application detection[70]. More-
over, Random Forest models contain 30M leaves with a slim im-
provement (<1%) compared to a simpler decision tree (286k–552k
leaves). Hence, one cannot conclude that Random Forest models
obtained with default parameters are a suitable solution to the
problem (as it is, quite frankly, an overkill). Rather, the academic
community should be aware that the quest for 1% accuracy im-
provement comes with a model complexity cost, which should not
be neglected.

Summary. The anonymization applied to our private dataset rep-
resents a good compromise as ML/DL models suffer only a modest
accuracy loss with respect to the private dataset and qualitative
results show consistent ranking across models – compared to com-
monly adopted datasets in literature, AppClassNet is a “realistic”
and conservative benchmark aiming to empower researchers to
address challenging and larger scale product-level problems [70].

5 DISCUSSION
While we hope that AppClassNet becomes one of the standard
benchmarks for traffic classification problems, we need to clarify
its allowed and prohibited usages (Sec.5.1), as well as its limitations
as result of the performed anonymization (Sec.5.2).

5.1 Allowed and prohibited usage
Openly sharing dataset has associated cost (e.g., the anonymization
process). Additionally, it exposes the data provider to additional
risks (e.g., reverse engineering) and consequent potential harm (e.g.,
leak of business sensitive information) [16]. As such, we clearly state



AppClassNet: A commercial-grade dataset
for application identification research Conference’17, July 2017, Washington, DC, USA

the allowed and prohibited usages of AppClassNet. We understand
that, while doing so, we are not fully sheltered from malicious third
parties abuse. At the same time, we appeal researchers seeking to
use AppClassNet to follow ACM Code of Ethics and Professional
Conduct [34], which clearly puts avoid harm among its first and
foremost articles (Art 1.2), and to adhere to the following guidelines.

5.1.1 Allowed usage. Explicitly allowed usage of the open-source
dataset is limited to Academic usage, and in particular limited to
algorithms for inference and training related to the use case of
traffic classification, as described in this paper. While it is out of
the scope of this section to provide a fully exhaustive list of legally
binding allowed usages, we make concrete examples for the sake
of clarity. Allowed usage for inference-related ML/DL problems
include for instance: application identification (supervised classifi-
cation on fine-grained labels[70]), zero-day application detection
(e.g., open set recognition[70]), inference speedup (by hardware
acceleration[32], approximate caching[31], quantization). Allowed
usage for training-related ML/DL algorithms include for instance:
distributed training by sharing models instead of data (federated
learning[38, 69]), training from few samples (few-shot learning[64]),
pre-processing techniques to simplify training (transfer or self-
supervised learning[26, 58]), techniques to add/remove classes
to/from existing models (incremental/decremental learning[19, 21]),
techniques to automatically design new classification engines (neu-
ral architecture search[30]). While it is outside of the scope of this
paper to also provide a research agenda for open problems related
to traffic classification, we note that combinations of above research
tasks is also possible and novel. AppClassNet is a good playground
for the design, e.g., via autoML, of accurate models that are also com-
putationally simple from an inference perspective, which has only
seldomly been taken into account. We finally suggest to researchers
working on unrelated traffic classification use cases early listed, or
whenever in doubt about the legitimacy of using AppClassNet in
their work, to contact us [34].

5.1.2 Prohibited usage. We explicitly prohibit usages of the dataset
for commercial use. We additionally prohibit any reverse engineer-
ing attempts, in line with deontological considerations concerning
network measurements [16]. In reason of the anonymization tech-
niques employed, the current dataset has direct little commercial
value. As such, we mostly discuss reverse engineering practices. In-
deed, while academic work performing reverse engineering would
not constitute a violation of commercial usage per se, it could sig-
nificantly lower the barrier for third parties to use the reverse
engineered dataset for commercial use. As such, de-anonymization
techniques that would try to expose users, classes, or application
labels, signatures and any other non directly available information
of the private dataset, from any technique applied on data avail-
able in the public dataset, are explicitly prohibited. We understand
that, once data is available publicly, this risk exists. However, we
hope to make it clear that, shall AppClassNet be victim of a re-
verse engineering attempt (fruitful or not), this would significantly
threaten the ability for industrial players to release datasets such as
AppClassNet in the future. We thus appeal once more to [34] and
we suggest to contact us for a usage that is not explicitly authorized.

5.2 Limits and alternatives
As earlier introduced, AppClassNet does not aim to be the one and
only traffic classification benchmark. As such we list its limits and
alternatives for the interested readers.

5.2.1 Limits. The limited amount of information in AppClassNet
constrains the possible classification operations. For instance, owing
to the lack of flow-level identifiers, it is not possible to perform ag-
gregated endpoint classification, or correlate multiple classifications
across multiple flows of the same endpoint [59]. Since the dataset
considers only the first 20 packet sizes and directions for a flow,
it is unsuitable for multi-modal classification [15] or continuous
classification across multiple windows of the same (sub)flow [46].

Moreover, several studies have analyzed the classification per-
formance as a function of the sequence length, which is altered
by permutation in AppClassNet, making such analysis worthless.
Similarly, while approximate-key caching [31] would work given
that the natural skew of the traffic is preserved, approximation
functions such as prefix(·) that work best on the private dataset
would not be suitable on the public dataset due to permutation.

The dataset does not contain flow arrival rate so it cannot be
used as a realistic workload for traffic classification engines. How-
ever, it can still be used as a controlled workload [32] for stress
testing the target classification system. As such, AppClassNet is
more geared for contribution onML/DL techniques (e.g., comparing
different training algorithms), than for novel system-level aspects
(e.g., feature engineering).

5.2.2 Alternatives. We observe that while collecting large volumes
of real labeled network data is a daunting effort for a single academic
partner, a coordinated pooling effort acrossmultiple research groups
can be an effective strategy to achieve this goal – the list of datasets
reported in Table 1 and the additional datasets reviewed in [13, 59]
indeed constitutes a good example and starting point.

Clearly, due to the anonymization process, the current dataset
cannot be directly merged with other datasets (as learning on this
dataset is non directly informative for other real applications). At
the same time, used alongside alternatives such as those expressed
above, AppClassNet can hopefully help the scientific community to
focus and reinforce the soundness of scientific results. We believe
that, given its characteristics (i.e., scale of samples and classes,
conservative performance), AppClassNet provides a challenging
and instrumental research playground as it helps ensuring that
results are not biased by small datasets — this avoids excessively
focusing on “easy problems” where many solutions can achieve the
90% accuracy “holy grail”.

6 CONCLUSION
This paper describes AppClassNet, a dataset obtained from a pri-
vate commercial-grade dataset comprising thousands of application
labels. AppClassNet represents a substantial portion of the original
private dataset, opportunely altered to deprive it of user-private
and business-sensitive information.

We openly release the dataset at [12], alongwith code for baseline
techniques, and we hope that it can become instrumental for the
benchmarking of data-driven algorithms applied to networking-
related classification problems.



Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] https://www.image-net.org/download.php.
[2] https://commoncrawl.org/.
[3] https://recon.meddle.mobi/cross-market.html.
[4] https://wand.net.nz/projects/details/libprotoident.
[5] https://sourceforge.net/projects/l7-filter/.
[6] https://github.com/ntop/nDPI.
[7] https://www.cisco.com/c/en/us/products/ios-nx-os-software/network-based-

application-recognition-nbar/index.html.
[8] https://www.ipoque.com/products/dpi-engine-rs-pace-2-for-application-

awareness.
[9] https://support.huawei.com/enterprise/de/doc/EDOC1000012889?section=j00c.
[10] https://en.wikipedia.org/wiki/General_Data_Protection_Regulation.
[11] https://en.wikipedia.org/wiki/Personal_Information_Protection_Law_of_the_

People’s_Republic_of_China.
[12] https://figshare.com/articles/dataset/AppClassNet_-_A_commercial-

grade_dataset_for_application_identification_research/20375580.
[13] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, Valerio Persico, and

Antonio Pescapé. Mirage: Mobile-app traffic capture and ground-truth creation.
In International Conference on Computing, Communications and Security (ICCCS).
IEEE, 2019.

[14] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé.
Mobile encrypted traffic classification using deep learning. In Proc. IEEE TMA,
2018.

[15] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapè.
Mimetic: Mobile encrypted traffic classification using multimodal deep learning.
Computer networks, 165:106944, 2019.

[16] Mark Allman and Vern Paxson. Issues and etiquette concerning use of shared
measurement data. In ACM SIGCOMM Internet Measurement Conference (IMC),
pages 135–140, 2007.

[17] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and
Kave Salamatian. Traffic classification on the fly. ACM SIGCOMM Computer
Communication Review, 36(2):23–26, 2006.

[18] Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossi, and Paolo Tofanelli. Re-
vealing skype traffic: when randomness plays with you. In Proc. ACM SIGCOMM,
2007.

[19] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine
unlearning. arXiv preprint arXiv:1912.03817, 2019.

[20] Raouf Boutaba, Mohammad A Salahuddin, Noura Limam, Sara Ayoubi, Nashid
Shahriar, Felipe Estrada-Solano, and Oscar M Caicedo. A comprehensive sur-
vey on machine learning for networking: evolution, applications and research
opportunities. Journal of Internet Services and Applications, 9(1):16, 2018.

[21] Giampaolo Bovenzi, Lixuan Yang, Alessandro Finamore, Giuseppe Aceto,
Domenico Ciuonzo, Antonio Pescape, and Dario Rossi. A first look at class
incremental learning in deep learning mobile traffic. In IFIP Traffic Monitoring
and Analysis (TMA), 2021.

[22] L. Breiman. Random forests. Machine Learning, 45, 2001.
[23] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regression

Trees. Taylor & Francis, 1984.
[24] Tomasz Bujlow, Valentin Carela-Espanol, and Pere Barlet-Ros. Independent

comparison of popular dpi tools for traffic classification. Computer Networks,
76:75–89, 2015.

[25] Nicholas Carlini, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad
Mahmoody, and Florian Tramèr. Neuracrypt is not private. CoRR, abs/2108.07256,
2021.

[26] Ting Chen, Simon Kornblith, MohammadNorouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International
conference on machine learning, pages 1597–1607. PMLR, 2020.

[27] Zhitang Chen, Ke He, Jian Li, and Yanhui Geng. Seq2img: A sequence-to-image
based approach towards ip traffic classification using convolutional neural net-
works. In Proc. IEEE BigData, pages 1271–1276, 2017.

[28] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli. Traffic
classification through simple statistical fingerprinting. ACM SIGCOMM Computer
Communication Review, 37(1):5–16, 2007.

[29] P.M. Santiago del Rio, D. Rossi, F. Gringoli, L. Nava, L. Salgarelli, and J. Aracil.
Wire-speed statistical classification of network traffic on commodity hardware.
In Proc. ACM IMC, 2012.

[30] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. The Journal of Machine Learning Research, 20(1):1997–2017,
2019.

[31] Alessandro Finamore, James Roberts, Massimo Gallo, and Dario Rossi. Accelerat-
ing deep learning classification with error-controlled approximate-key caching.
IEEE INFOCOM, 2022.

[32] Massimo Gallo, Alessandro Finamore, Gwendal Simon, and Dario Rossi. Fenxi:
Deep-learning traffic analytics at the edge. ACM/IEEE Symposium on Edge Com-
puting (SEC), 2021.

[33] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[34] DW Gotterbarn, Bo Brinkman, Catherine Flick, Michael S Kirkpatrick, Keith
Miller, Kate Vazansky, and Marty J Wolf. Acm code of ethics and professional
conduct. 2018.

[35] Francesco Gringoli, Luca Salgarelli, Maurizio Dusi, Niccolo Cascarano, Fulvio
Risso, and KC Claffy. GT: picking up the truth from the ground for internet
traffic. ACM SIGCOMM Computer Communication Review, 39(5):12–18, 2009.

[36] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[37] Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. InstaHide: Instance-
hiding schemes for private distributed learning. In Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119, pages 4507–4518, Jul
2020.

[38] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strate-
gies for improving communication efficiency. In NeurIPS Workshop on Private
Multi-Party Machine Learning, 2016.

[39] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor Van Der Veen, and Christian Platzer. Andrubis–1,000,000
apps later: A view on current android malware behaviors. In IEEE International
Workshop on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS), pages 3–17, 2014.

[40] Bo Liu, Ming Ding, Hanyu Xue, Tianqing Zhu, Dayong Ye, Li Song, and Wanlei
Zhou. Dp-image: Differential privacy for image data in feature space, 2021.

[41] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime
Lloret. Network traffic classifier with convolutional and recurrent neural net-
works for internet of things. IEEE Access, 5:18042–18050, 2017.

[42] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. Deep packet: A novel approach for encrypted traffic
classification using deep learning. Soft Computing, 24(3), 2020.

[43] MeisamMohammady, LingyuWang, Yuan Hong, Habib Louafi, Makan Pourzandi,
and Mourad Debbabi. Preserving both privacy and utility in network trace
anonymization. In ACM Conference on Computer and Communications Security
(CCS), page 459–474, 2018.

[44] Andrew W Moore and Konstantina Papagiannaki. Toward the accurate identifi-
cation of network applications. In Proc. PAM, 2005.

[45] Andrew W Moore and Denis Zuev. Internet traffic classification using bayesian
analysis techniques. In Proc. ACM SIGMETRICS, 2005.

[46] Thuy TT Nguyen and Grenville Armitage. Training on multiple sub-flows to
optimise the use of machine learning classifiers in real-world ip networks. In
IEEE LCN, pages 369–376, 2006.

[47] Thuy TT Nguyen and Grenville J Armitage. A survey of techniques for internet
traffic classification using machine learning. IEEE Communications Surveys and
Tutorials, 10(1-4):56–76, 2008.

[48] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar. Towards the
deployment of machine learning solutions in network traffic classification: A
systematic survey. IEEE Communications Surveys and Tutorials, pages 1–1, 2018.

[49] Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. Unleashing the
tiger: Inference attacks on split learning. In ACM Computer and Communications
Security (CCS), 2021.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[51] Jingjing Ren, Martina Lindorfer, Daniel J Dubois, Ashwin Rao, David Choffnes,
and Narseo Vallina-Rodriguez. A longitudinal study of PII leaks across android
app versions. In Network and Distributed System Security Symposium (NDSS),
volume 10, 2018.

[52] Markus Ring, Sarah Wunderlich, Deniz Scheuring, Dieter Landes, and Andreas
Hotho. A survey of network-based intrusion detection data sets. Springer
Computers and Security, 86:147–167, 2019.

[53] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[54] Tal Shapira and Yuval Shavitt. Flowpic: Encrypted internet traffic classification
is as easy as image recognition. In IEEE INFOCOM Workshops, 2019.

[55] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you
need. CoRR, abs/2106.03253, 2021.

[56] Nazanin Takbiri, Amir Houmansadr, Dennis L Goeckel, and Hossein Pishro-
Nik. Matching anonymized and obfuscated time series to users’ profiles. IEEE
Transactions on Information Theory, 65(2):724–741, 2018.

[57] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. App-
scanner: Automatic fingerprinting of smartphone apps from encrypted network
traffic. In Proc. IEEE EuroS&P, 2016.

[58] Md Shamim Towhid and Nashid Shahriar. Encrypted network traffic classification
using self-supervised learning. In IEEE NetSoft, 2022.

[59] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J
Dubois, Martina Lindorfer, David Choffnes, Maarten van Steen, and Andreas Peter.

https://www.image-net.org/download.php
https://commoncrawl.org/
 https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
 https://en.wikipedia.org/wiki/Personal_Information_Protection_Law_of_the_People's_Republic_of_China
 https://en.wikipedia.org/wiki/Personal_Information_Protection_Law_of_the_People's_Republic_of_China
https://figshare.com/articles/dataset/AppClassNet_-_A_commercial-grade_dataset_for_application_identification_research/20375580
https://figshare.com/articles/dataset/AppClassNet_-_A_commercial-grade_dataset_for_application_identification_research/20375580


AppClassNet: A commercial-grade dataset
for application identification research Conference’17, July 2017, Washington, DC, USA

Flowprint: Semi-supervised mobile-app fingerprinting on encrypted network
traffic. In Network and Distributed System Security Symposium (NDSS), volume 27,
2020.

[60] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split
learning for health: Distributed deep learning without sharing raw patient data.
CoRR, abs/1812.00564, 2018.

[61] Ly Vu, Cong Thanh Bui, and Quang Uy Nguyen. A deep learning based method
for handling imbalanced problem in network traffic classification. In ACM
International Symposium on Information and Communication Technology, 2017.

[62] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang. End-to-end encrypted traffic
classification with one-dimensional convolution neural networks. In Proc. IEEE
ISI, 2017.

[63] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. Mal-
ware traffic classification using convolutional neural network for representation
learning. In Proc. IEEE ICOIN, 2017.

[64] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing
from a few examples: A survey on few-shot learning. ACM Computing Surveys,
53(3):1–34, 2020.

[65] ZhanyiWang. The applications of deep learning on traffic identification. BlackHat
USA, 2015.

[66] Jun Xu, Jinliang Fan, Mostafa H Ammar, and Sue B Moon. Prefix-preserving
IP address anonymization: Measurement-based security evaluation and a new
cryptography-based scheme. In IEEE International Conference on Network Proto-
cols (ICNP), pages 280–289. IEEE, 2002.

[67] Adam Yala, Homa Esfahanizadeh, Rafael G. L. D’ Oliveira, Ken R. Duffy, Manya
Ghobadi, Tommi S. Jaakkola, Vinod Vaikuntanathan, Regina Barzilay, and Muriel
Medard. Neuracrypt: Hiding private health data via random neural networks for
public training, 2021.

[68] Adam Yala, Victor Quach, Homa Esfahanizadeh, Rafael G. L. D’Oliveira, Ken R.
Duffy, Muriel Médard, Tommi S. Jaakkola, and Regina Barzilay. Syfer: Neural
obfuscation for private data release, 2022.

[69] Lixuan Yang, Cedric Beliard, and Dario Rossi. Heterogeneous data-aware feder-
ated learning. In IJCAI Workshop on Federated Learning, 2020.

[70] Lixuan Yang, Alessandro Finamore, Jun Feng, and Dario Rossi. Deep learning and
zero-day traffic classification: Lessons learned from a commercial-grade dataset.
IEEE Transactions on Network and Service Management, 18, 2021.


	Abstract
	1 Introduction
	2 Background
	2.1 Use-case viewpoint
	2.2 Datasets viewpoint

	3 Dataset
	3.1 Private and business-sensitive information
	3.2 Anonymization background
	3.3 Methodology
	3.4 Private vs Public dataset characteristics

	4 Baseline
	4.1 Baseline models
	4.2 Baseline performance

	5 Discussion
	5.1 Allowed and prohibited usage
	5.2 Limits and alternatives

	6 Conclusion
	References

